Notes and references
1 J. P. Corbet and G. Mignani, Chem. Rev., 2006, 106, 2651–2710.
2 Metal-Catalyzed Cross-Coupling Reactions, 2nd edn, ed. A. de
Meijere and F. Diederich, Wiley-VCH, Weinheim, Germany, 2004.
3 D. S. Surry and S. L. Buchwald, Angew. Chem., Int. Ed., 2008, 47,
6338–6361.
4 D. S. Surry and S. L. Buchwald, Chem. Sci., 2010, 1, 13–31.
5 D. W. Ma and Q. A. Cai, Acc. Chem. Res., 2008, 41, 1450–1460.
6 D. Maiti, B. P. Fors, J. L. Henderson, Y. Nakamura and
S. L. Buchwald, Chem. Sci., 2011, 2, 57.
Scheme 2 Cu-catalyzed direct synthesis of CRE 10904.
As shown in Table 2, electron-neutral (entry 1), -rich (entry 2)
and -deficient (entry 3) aryl iodides underwent efficient coupling
under these conditions.
7 N. A. Afagh and A. K. Yudin, Angew. Chem., Int. Ed., 2010, 49,
262–310.
Chloride or bromide substituted aryl iodides (entries 8
and 9, respectively) produced the desired products in reasonable
yields. Using the general procedure, heteroaryl ethers from
2-iodopyrazine (entry 5), iodo pyridines (entries 7 and 12) and
3-iodoquinoline (entry 6) were obtained in good yield. Similar
to the phenol arylation protocol, the chain length and position
of the aliphatic alcohol had little impact on the reaction
outcome.
8 I. S. Young and P. S. Baran, Nat. Chem., 2009, 1, 193–205.
9 R. A. Shenvi, D. P. O’Malley and P. S. Baran, Acc. Chem. Res.,
2009, 42, 530–541.
10 A. Shafir, P. A. Lichtor and S. L. Buchwald, J. Am. Chem. Soc.,
2007, 129, 3490–3491.
11 H. Z. Yu, Y. Y. Jiang, Y. Fu and L. Liu, J. Am. Chem. Soc., 2010,
132, 18078–18091.
12 D. Maiti and S. L. Buchwald, J. Am. Chem. Soc., 2009, 131,
17423–17429.
13 R. A. Altman, A. M. Hyde, X. Huang and S. L. Buchwald, J. Am.
Chem. Soc., 2008, 130, 9613–9620.
14 K. C. Nicolaou, C. N. C. Boddy, S. Brase and N. Winssinger,
Angew. Chem., Int. Ed., 1999, 38, 2097–2152.
15 R. P. Garay, J. P. Labaune, D. Mesangeau, C. Nazaret, T. Imbert
and G. Moinet, J. Pharmacol. Exp. Ther., 1990, 255, 415–422.
16 G. Goinet, T. Imbert, D. Marais and J. L. Vidaluc, in Fr. Demande,
1991, FR 2653119 A1 19910419.
17 A. S. Espeseth, M. Xu, Q. Huang, C. A. Coburn, K. L. G. Jones,
M. Ferrer, P. D. Zuck, B. Strulovic, E. A. Price, G. X. Wu,
A. L. Wolfe, J. E. Lineberger, M. Sardana, K. Tugusheva,
B. L. Pietrak, M. C. Crouthamel, M. T. Lai, E. C. Dodson,
R. Bazzo, X. P. Shi, A. J. Simon, Y. M. Li and D. J. Hazuda,
J. Biol. Chem., 2005, 280, 17792–17797.
18 A. Linusson, J. Gottfries, T. Olsson, E. Ornskov, S. Folestad,
B. Norden and S. Wold, J. Med. Chem., 2001, 44, 3424–3439.
19 C. P. Sparrow and J. Olszewski, Proc. Natl. Acad. Sci. U. S. A.,
1992, 89, 128–131.
20 I. P. Beletskaya and A. V. Cheprakov, Coord. Chem. Rev., 2004,
248, 2337.
Of note is that 2-hydroxyphenethyl alcohol generated alkyl
aryl ether only (entry 10). Employing the current method, a
large quantity of the alcohol coupling partner is not required
for the synthesis of alkyl aryl ether. The efficiency of the
methodology developed here is further tested by the one step
synthesis of 2-(2-(4-fluorophenoxy)ethyl)phenol (CRE 10 904,
Scheme 2, yield 50%) the synthesis of which previously
required 4 steps.15,16
In conclusion, an orthogonal set of conditions for the
selective Cu-catalyzed O-arylation of unprotected phenols
and aliphatic alcohols has been discovered. A picolinic
acid (1)-ligated Cu-catalyst can be used to chemoselectively
arylate phenols, a ligand-free Cu-catalyst promotes exclusive
aliphatic alcohol arylation if an excess of strong base is
employed.
21 S. V. Ley and A. W. Thomas, Angew. Chem., Int. Ed., 2003, 42,
5400–5449.
22 F. Monnier and M. Taillefer, Angew. Chem., Int. Ed., 2009, 48,
6954–6971.
23 J. W. Tye, Z. Q. Weng, R. Giri and J. F. Hartwig, Angew. Chem.,
Int. Ed., 2010, 49, 2185–2189.
24 F. G. Bordwell and D. J. Algrim, J. Am. Chem. Soc., 1988, 110,
2964–2968.
25 D. Maiti and S. L. Buchwald, J. Org. Chem., 2010, 75, 1791–1794.
This activity is supported by an educational donation
provided by Amgen and by funds from the National Institutes
of Health (Grant GM-58160). D.M. sincerely thanks Professor
Steve Buchwald for providing full support to complete this
work. The NMR instruments used for this study were furnished
by funds from the National Science Foundation (CHE 9808061
and DBI 9729592).
c
8342 Chem. Commun., 2011, 47, 8340–8342
This journal is The Royal Society of Chemistry 2011