ꢀ
I. Czelusniak et al. / Journal of Organometallic Chemistry 696 (2011) 3023e3028
3024
2. Experimental
1C, H2Ca), 29.4 (1C, H2Cb) 21.4 (1C, H2Cg), 13.65 (1C, Me). 119Sn{1H}
NMR (186.5 MHz, CDCl3, 298 K):
¼ ꢀ98.
1-trichlorostannyl-2-chloro-2-hydroxymethyl-ethene (4): 1H
d
All reactions were performed using standard Schlenk tech-
niques under an atmosphere of nitrogen and with substrates and
solvents freshly distilled from calcium hydride. 1H, 13C NMR, and
two-dimensional 1He1H COSY, 1He13C HMQC, and 1He13C HMBC
NMR spectra were recorded with a Bruker AMX 300 or 500 MHz
instrument. All proton and carbon chemical shifts were referenced
4
2
NMR (
d
, CDCl3, 500 MHz): 6.38 (t, JHeH ¼ 2.3 Hz, JHeSn(117/
¼
203/213 Hz, 1H, HSnC1), 4.54 (s, 1H, HO), 4.48 (d,
119)
4JHeH ¼ 2.3 Hz, 4JHeSn ¼ 18.7 Hz, 1JHeC ¼ 153 Hz, 2H, H2Ca). 13C{1H}
NMR (
d
, CDCl3, 125 MHz): 147.4 (2JCeSn(117/119) ¼ 135/140 Hz, 1C,
ClC2), 120.3 (1JCeSn(117/119) ¼ 1147/1200 Hz, 1C, HSnC1), 64.1
to the residual proton signal for 1H NMR (
natural abundant carbon signal of the solvent for 13C NMR (
CDCl3). 119Sn NMR chemical shifts were referenced relative to
Ph3SnCl (
d
7.24 CDCl3) or the
77.0
(3JCeSn ¼ 42 Hz, 1C, H2Ca). 119Sn{1H} NMR (112 MHz, CDCl3, 298 K):
d
d
¼ ꢀ190. ESI-MS method: found M ¼ 316.80, calculated for
C3H4Cl4OSn M ¼ 316.81.
d
ꢀ44.7 [26]) used as an external standard.
exo,exo-2-trichlorostannyl-3-chloro-bicyclo[2.2.1]-heptane (5):
Analyses of the reaction products were performed on a Hew-
lettePackard GCeMS system containing an HP590II gas chro-
matograph equipped with a HP-5MS column and an HP5971A mass
detector. Mass spectra were measured by electron impact with
ionizing energy of 70 eV and on apex-Ultra mass spectrometer
using the ESI method.
1H NMR (
d
, CDCl3, 300 MHz): 4.41 (d, 3JHeH ¼ 7.2 Hz, 3JHeSn ¼ 95 Hz,
1H, HClC3), 3.46 (dd, 3JHeH ¼ 7.2 Hz, 3JHeH ¼ 2.2 Hz, 2JHeSn ¼ 77 Hz,
1H, HSnC2), 2.92 (s, 1H, HC1), 2.68 (s, 1H, HC4), 2.27 (d,
2JHeH ¼ 11 Hz, 1H, H2C7), 1.77 (d, 2JHeH ¼ 8.3 Hz, 2H, 2H2C5,6), 1.55d
(2JHeH ¼ 11 Hz, 1H, H2C7), 1.24 (dd, 2JHeH ¼ 8.3 Hz, JHeH ¼ 2.1 Hz,
3
2H, 2H2C5,6). 13C{1H} NMR ( , CDCl3, 75 MHz): 70.2 (1JCeSn(117/
d
¼ 759/794 Hz, 1C, HSnC2), 64.5 (2JCeSn(117/119) ¼ 89/93 Hz, 1C,
119)
2.1. General procedure for stannylation of unsaturated
hydrocarbons by SnCl4
HClC3), 46.4 (3JCeSn ¼ 8.3 Hz, 1C, HC4), 40.2 (2JCeSn ¼ 33.3 Hz, 1C,
HC1), 35.5 (1C, H2C7), 30.1 (3JCeSn(117/119) ¼ 160/168 Hz, 1C, H2C6),
25.9 (4JCeSn ¼ 14 Hz, 1C, H2C5). 119Sn{1H} NMR (112 MHz, CDCl3,
A
dichloromethane solution (15 cm3) of SnCl4 (0.2 cm3,
298 K):
d
¼ ꢀ97.
1.7 mmol) and unsaturated hydrocarbon in a 1:1 molar ratio was
stirred at room temperature for 24 h. All volatile materials were
then evaporated under reduced pressure at room temperature, and
the residue was analyzed by NMR spectroscopy in CDCl3 solution,
which revealed the 100% conversion of the substrate and the
formation of one product.
exo,exo-5-trichlorostannyl-6-chloro-bicyclo[2.2.1]-hept-2-ene
(6a): 1H NMR (
d
, CDCl3, 500 MHz): 6.35 (dd, JHeH ¼ 5.6 Hz,
3
3JHeH ¼ 3.0 Hz, JHeSn ¼ 12 Hz, 1H, HC3), 6.18 (dd, JHeH ¼ 5.6 Hz,
4
3
3JHeH ¼ 3.2 Hz, JHeSn ¼ 14 Hz, 1H, HC2), 4.24 (dd, JHeH ¼ 7.0 Hz,
5
3
3JHeH ¼ 1.0 Hz, JHeSn ¼ 88 Hz, 1H, HClC6), 3.49 (d, JHeH ¼ 1 Hz,
3
3
3JHeSn ¼ 48 Hz, 1H, HC4), 3.31 (dd, JHeH ¼ 7.0 Hz, JHeH ¼ 2.0 Hz,
3
3
2JHeSn ¼ 45 Hz, 1H, HSnC5), 3.29 (s, 1H, HC1), 2.27 (d, 2JHeH ¼ 9.9 Hz,
2.2. General procedure for reactions in the NMR tube
1H, H2C7), 1.92 (d, 2JHeH ¼ 9.9 Hz, 1H, H2C7). 13C{1H} NMR (
d, CDCl3,
125 MHz): 140.3 (3JCeSn(117/119) ¼ 132/137 Hz, 1C, HC3), 135.6
(4JCeSn ¼ 17 Hz, 1C, HC2), 65.3 (1JCeSn(117/119) ¼ 716/751 Hz, 1C,
HSnC5), 58.6 (2JCeSn ¼ 47 Hz, 1C, HClC6), 51.6 (1C, HC1), 45.2 (1C,
H2C7), 45.1 (2JCeSn ¼ 24 Hz, 1C, HC4). 119Sn{1H} NMR (112 MHz,
The course of the stannylation reaction was also followed by 1H
NMR spectroscopy. As a general procedure for NMR experiments,
unsaturated hydrocarbon (ca. 0.85 mmol) was weighed into an
NMR tube. The tube was then capped with a septum. A portion of
CDCl3 (0.7 cm3) and SnCl4 (0.1 cm3, 0.85 mmol) was then added to
the NMR tube via a syringe. The tube was periodically monitored by
1H NMR spectroscopy over the desired length of time at 25 ꢁC.
CDCl3, 298 K):
d
¼ ꢀ88.
endo,endo-5-trichlorostannyl-6-chloro-bicyclo[2.2.1]-hept-2-
ene (6b): 1H NMR (
d
, CDCl3, 500 MHz): 6.65 (dd, JHeH ¼ 5.6 Hz,
3
3JHeH ¼ 2.8 Hz,1H, HC3), 6.40 (dd, 3JHeH ¼ 5.6 Hz, 3JHeH ¼ 2.8 Hz,1H,
HC2), 4.90 (dd, 3JHeH ¼ 7.7 Hz, 3JHeH ¼ 3.5 Hz, 3JHeSn(117/119) ¼ 131/
3
3
2.3. NMR characteristic of stannylation products
137 Hz, 1H, HClC6), 3.96 (dd, JHeH ¼ 7.7 Hz, JHeH ¼ 3.5 Hz,
2JHeSn ¼ 38 Hz, 1H, HC5), 3.49 (s, 1H, HC4), 3.45 (s, 1H, HC1), 1.90 (d,
2JHeH ¼ 9.7 Hz, 1H, H2C7), 1.43 (d, 2JHeH ¼ 9.7 Hz, 1H, H2C7). 13C{1H}
1-trichlorostannyl-2-chloro-2-phenyl-ethene (1): 1H NMR (
d,
3
4
CDCl3, 500 MHz): 7.67 (dd, JHeH ¼ 7.8 Hz, JHeH ¼ 2.0 Hz, 2H,
NMR (
d
, CDCl3, 125 MHz): 137.8 (3JCeSn ¼ 68 Hz, 1C, HC3), 135.5 (1C,
3
HCoePh), 7.49 (m, 1H, HCpePh), 7.43 (tt, JHeH
¼
7.8 Hz,
HC2), 68.3 (1JCeSn(117/119)
¼
876/917 Hz, 1C, HSnC5), 57.8
4JHeH ¼ 1.4 Hz, 2H, HCmePh), 6.56 (s, JHeSn(117/119) ¼ 174/182 Hz,
(2JCeSn ¼ 69 Hz, 1C, HClC6), 50.1 (3JCeSn ¼ 18 Hz, 1C, H2C7), 49.4
2
1H, HSnC1). 13C{1H} NMR (
d
, CDCl3, 125 MHz): 154.6 (2JCeSn ¼ 45 Hz,
(3JCeSn ¼ 20 Hz, 1C, HC1), 46.9 (2JCeSn ¼ 38 Hz, 1C, HC4). 119Sn{1H}
1C, ClC2), 134.7 (3JCeSn(117/119) ¼ 118/123 Hz, 1C, CiePh), 131.7 (1C,
NMR (112 MHz, CDCl3, 298 K):
d
¼ ꢀ93.
HCpePh), 128.3 (2C, HCmePh), 127.4 (2C, HCoePh), 122.7 (1JCeSn(117/
¼ 1097/1147 Hz, 1C, HSnC1). 119Sn{1H} NMR (186.5 MHz, CDCl3,
119)
298 K):
3. Results and discussion
d
¼ ꢀ98.
1-trichlorostannyl-2-chloro-2-t-butyl-ethene (2): 1H NMR (
d,
CDCl3, 500 MHz): 6.00 (s, 1JHeC ¼ 171 Hz, 2JHeC ¼ 40 Hz, 2JHeSn(117/
3.1. Stannylation of alkynes
¼ 190/199 Hz, 1H, HSnC1), 1.27 (s, 1JHeC ¼ 129 Hz, 2JHeC ¼ 40 Hz,
119)
5JHeSn ¼ 4.6 Hz, 9H, Me). 13C{1H} NMR (
d, CDCl3, 125 MHz): 169.0
The exothermic reaction of SnCl4 with various terminal alkynes
in dichloromethane solution gave stannylation products, which
were identified by NMR methods (1H, 13C{1H}, 1He1H COSY, and
1He13C HMQC) as a chlorovinyltin trichlorides 1e4 (Scheme 1). The
(2JCeSn ¼ 71 Hz, 1C, ClC2), 121.2 (1JCeSn(117/119) ¼ 1079/1129 Hz, 1C,
HSnC1), 42.2 (3JCeSn(117/119) ¼ 93/97 Hz, 1C, C3etBu), 28.8 (3C,
MeetBu). 119Sn{1H} NMR (186.5 MHz, CDCl3, 298 K):
d
¼ ꢀ102.
1-trichlorostannyl-2-chloro-2-n-butyl-ethene (3): 1H NMR (
d,
4
2
CDCl3, 500 MHz): 5.98 (t, JHeH ¼ 1.0 Hz, JHeSn(117/119) ¼ 191/
200 Hz, 1H, HSnC1), 2.57 (t, JHeH ¼ 7.7 Hz, JHeC ¼ 130 Hz, 2H,
3
1
R
Cl
H
SnCl3
R
H +
SnCl4
H2Ca), 1.61 (tt, 3JHeH ¼ 7.5 Hz, 2H, H2Cb), 1.36 (qt, 3JHeH ¼ 7.5 Hz, 2H,
CH Cl , r.t.
2
2
3
H2Cg), 0.93 (t, JHeH ¼ 7.4 Hz, 2H, H3Cd). 13C{1H} NMR (
d, CDCl3,
1 - 4
R = Ph,t Bu, nBu, HOCH2
125 MHz): 160.0 (2JCeSn ¼ 63 Hz, 1C, ClC2), 122.3 (1JCeSn(117/
¼ 1025/1073 Hz, 1C, HSnC1), 41.2 (3JCeSn(117/119) ¼ 108/113 Hz,
Scheme 1. Stannylation of alkynes.
119)