attractive synthesis of optically active amino acids, wherein
the imino esters, precursors of azomethine ylides, existed
as key intermediates.6ꢀ9 Inspired by the biosynthetic
mechanism10 and biomimetic procedures, we proposed
a biomimetic 1,3-dipolar cycloaddition, rendering assem-
bly of R-keto esters, amines and electron-deficient olefins
into pyrrolidine derivatives in a structurally diverse man-
ner (Scheme 1c).
esters with amine turned out to be key element of the
proposed biomimetic 1,3-dipolar cycloaddition (Scheme 1c).
Previously, we demonstrated that chiral phosphoric acids
are excellent catalysts for 1,3-dipolar cycloaddition;11
therefore, we initially investigated if the phosphoric acid
was able to catalyze the transamination of keto esters. The
1H NMR studies on the measurement of a mixture of
diethyl 2-oxomalonate (1a) and 4-nitrobenzylamine (2a)
with 10 mol % of 5a in toluene-d8 indicated that the
transamination proceeded smoothly to give azomethine
ylide at room temperature (Scheme 2).12 These findings
essentially permit the direct use of R-keto esters, the amino
acid precursors, as latent azomethine ylides to participate
in the enantioselective 1,3-dipolar cycloaddition with di-
polarophiles 3 under the catalysis of chiral phosphoric
acids. However, the use of either chiralLewis acids orother
organocatalysts that were typically applied to asymmetric
1,3-dipolar cycloaddition2,3 failed to afford smooth trans-
amination, and thus they are impossible to catalyze the
three-component biomimetic 1,3-dipolar cycloaddition
reaction.
Scheme 1. Design of Bio-mimetic Cycloaddition Reaction
Scheme 2. Brønsted Acid Catalyzed Transamination
As long as azomethine ylides are formed, the 1,3-dipolar
cycloaddition with electronically deficient olefins could
occur in the presence of either organocatalysts or Lewis
acids.2,3 Thus, the identification of an appropriate chiral
catalyst for the efficient transamination process of keto
Consequently, the feasibility of the three-component
biomimetic 1,3-dipolar cycloaddition was explored by
evaluating a reaction of diethyl 2-oxomalonate (1a), 4-nitro-
benzylamine (2a), and dimethyl maleate (3a) in the
presence of 10 mol % of BINOL-derived phosphoric
acids13 at room temperature (Table 1). As expected, the enan-
tioselective cycloaddtion reaction proceeded smoothly to
furnish the desired product 4a in a 62% yield, but with a
low ee value (Table 1, entry 1). As reported previously,11
the structure of the chiral phosphoric acids derived from
BINOL still exerted great impact on the enantioselectivity
(entries 1ꢀ8) and the bisphosphoric acid 6 turned out to be
the best catalyst in terms of the stereochemical outcomes,
capable of delivering 95% ee (Table 1, entry 8). Further
optimization of reaction conditions revealed that the high-
est level of enantioselectivity (98% ee) could be achieved in
DCM at 50 °C (Table 1, entry 11).
ꢀ
(3) (a) Vicario, J. L.; Reboredo, S.; Badιa, D.; Carrillo, L. Angew.
Chem., Int. Ed. 2007, 46, 5168. (b) Ibrahem, I.; Rios, R.; Vesely, J.;
Cordova, A. Tetrahedron. Lett. 2007, 48, 6252. (c) Xue, M.-X.; Zhang,
X.-M.; Gong, L.-Z. Synlett 2008, 691. (d) Liu, Y.-K.; Liu, H.; Du, W.;
Yue, L.; Chen, Y.-C. Chem.;Eur. J. 2008, 14, 9873. (e) Kudryavtsev,
K. V.; Zagulyaeva, A. A. Russ. J. Org. Chem. 2008, 44, 378. (f) Yu, J.;
Shi, F.; Gong, L.-Z. Acc. Chem. Res. 2011, 44, 1156.
(4) For reviews: (a) Sardina, F. J.; Rapoport, H. Chem. Rev. 1996, 96,
1825. (b) Coldham, I.; Hufton, R. Chem. Rev. 2005, 105, 2765. (c)
Pandey, G.; Banerjee, P.; Gadre, S. R. Chem. Rev. 2006, 106, 4484. (d)
Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748.
(5) (a) Kuang, H.; Brown, M. L.; Davies, R. R.; Young, E. C.;
Distefano, M. D. J. Am. Chem. Soc. 1996, 118, 10702. (b) Kuang, H.;
Distefano, M. D. J. Am. Chem. Soc. 1998, 120, 1072. (c) Savile, C. K.;
Janey, J. M.; Mundorff, E. C.; Moore, J. C.; Tam, S.; Jarvis, W. R.;
Colbeck, J. C.; Krebber, A.; Fleitz, F. J.; Brands, J.; Devine, P. N.;
Huisman, G. W.; Hughes, G. J. Science 2010, 329, 305.
(6) Hjelmencrantz, A.; Berg, U. J. Org. Chem. 2002, 67, 3585.
(7) (a) Knudsen, K. R.; Bachmann, S.; Jørgensen, K. A. Chem.
Commun. 2003, 2602. (b) Bachmann, S.; Knudsen, K. R.; Jørgensen,
K. A. Org. Biomol. Chem. 2004, 2, 2044.
(8) (a) Xiao, X.; Xie, Y.; Su, C.; Liu, M.; Shi, Y. J. Am. Chem. Soc.
2011, 133, 12914. (b) Xiao, X.; Liu, M.; Rong, C.; Xue, F.; Li, S.; Xie, Y.;
Shi, Y. Org. Lett. 2012, 14, 5270. (c) Xue, F.; Xiao, X.; Wang, H.; Shi, Y.
Tetrahedron 2012, 68, 6862.
(11) (a) Chen, X.-H.; Zhang, W.-Q.; Gong, L.-Z. J. Am. Chem. Soc.
2008, 130, 5652. (b) Chen, X.-H.; Wei, Q.; Luo, S.-W.; Xiao, H.; Gong,
L.-Z. J. Am. Chem. Soc. 2009, 131, 13819. (c) He, L.; Chen, X.-H.; Wang,
D.-N.; Luo, S.-W.; Zhang, W.-Q.; Yu, J.; Ren, L.; Gong, L.-Z. J. Am.
Chem. Soc. 2011, 133, 13504.
(12) See the Supporting Information.
(13) For reviews: (a) Akiyama, T. Chem. Rev. 2007, 107, 5744. (b)
Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713. (c) Terada, M.
Chem. Commun. 2008, 4097. (d) Terada, M. Synthesis 2010, 12, 1929.
For leading references, see: (e) Uraguchi, D.; Terada, M. J. Am. Chem.
Soc. 2004, 126, 5356. (f) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K.
Angew. Chem., Int. Ed. 2004, 43, 1566.
(9) Wu, Y.; Deng, L. J. Am. Chem. Soc. 2012, 134, 14334.
(10) (a) Martell, A. E. Acc. Chem. Res. 1989, 22, 115. (b) Breslow, R.
Acc. Chem. Res. 1995, 28, 146. (c) Murakami, Y.; Kikuchi, J.-I.;
Hisaeda, Y.; Hayashida, O. Chem. Rev. 1996, 96, 721. (d) Breslow, R.
J. Biol. Chem. 2009, 284, 1337.
B
Org. Lett., Vol. XX, No. XX, XXXX