Exploring the Oxophilic Lewis Acidity of AuI Specie
Qiu, F. Li, Y. Zhang, J. Wang, Angew. Chem. 2010, 122, 2072–
2076; Angew. Chem. Int. Ed. 2010, 49, 2028–2032.
7 in ClCH2CH2Cl (0.025 m) in a pressure tube was added AuCl
(5 mol-%), P(C6F5)3 (5 mol-%) (or 5 mol-% Ph3PAuCl), and AgOTf
(5 mol-%). The resulting mixture was stirred at the reported tem-
perature for the reported time. After the reaction was complete, the
reaction mixture was poured into sat. NH4Cl, and then the product
was extracted with CH2Cl2 (3ϫ), dried with MgSO4, and concen-
trated in vacuo. The residue was purified by column chromatog-
raphy on silica gel to afford corresponding product 4, 6, or 8.
Oxophilic AuIII vs. π-philic AuI: a) A. W. Sromek, M. Rubina,
V. Gevorgyan, J. Am. Chem. Soc. 2005, 127, 10500–10501; b)
A. S. Dudnik, A. W. Sromek, M. Rubina, J. T. Kim, A. V. Ke-
lЈin, V. Gevorgyan, J. Am. Chem. Soc. 2008, 130, 1440–1452.
Y. Yamamoto, J. Org. Chem. 2007, 72, 7817–7831.
[4]
[5]
[6]
For examples of oxophilic AuI, see: a) T. Dombray, A. Blanc,
J.-M. Weibel, P. Pale, Org. Lett. 2010, 12, 5362–5365; b) C.-C.
Lin, T.-M. Teng, A. Odedra, R.-S. Liu, J. Am. Chem. Soc. 2007,
129, 3798–3799; c) C.-C. Lin, T.-M. Teng, C.-C. Tsai, H.-Y.
Liao, R.-S. Liu, J. Am. Chem. Soc. 2008, 130, 16417–16423.
Biologically active compounds: a) I.-M. Karaguni, K.-H. Glu-
senkamp, A. Langerak, C. Geisen, V. Ullrich, G. Winde, T.
Möröy, O. Müller, Bioorg. Med. Chem. Lett. 2002, 12, 709–713;
b) O. Müller, E. Gourzoulidou, M. Carpintero, I.-M. Kara-
guni, A. Langerak, C. Herrmann, T. Möröy, L. Klein-Hitpaβ,
H. Waldmann, Angew. Chem. 2004, 116, 456–460; Angew.
Chem. Int. Ed. 2004, 43, 450–454. Functional materials: c) J.
Barberá, O. A. Raitin, M. B. Ros, T. Torroba, Angew. Chem.
1998, 110, 308–312; Angew. Chem. Int. Ed. 1998, 37, 296–299;
d) A. Cappelli, S. Galeazzi, G. Giuliani, M. Anzini, A. Donati,
L. Zetta, R. Mendichi, M. Aggravi, G. Giorgi, E. Paccagnini,
S. Vomero, Macromolecules 2007, 40, 3005–3014. Ligands: e)
D. Zargarian, Coord. Chem. Rev. 2002, 233, 157–176; f) M. J.
Calhorda, V. Felix, L. F. Veiros, Coord. Chem. Rev. 2002, 230,
49–64.
Supporting Information (see footnote on the first page of this arti-
cle): Full experimental details and characterization data.
[7]
Acknowledgments
This work was supported by the Mid-Career Researcher Program
(No. R01-2009–008–3940) and Basic Science Research Program
(Nos. 2010–0017149 and 2010–0007737) through the National Re-
search Foundation of Korea (NRF) grant funded by the Ministry
of Education, Science and Technology (MEST). A.R.J. is grateful
for 2009 NRF Post-doctoral Fellowship Program for Foreign Re-
searchers (No. K20802001473-10B120004500). We gratefully
acknowledge Professor Juyoung Yoon (Department of Chemistry
and Nano Science, Ewha Womans University) for his generous sup-
port. We also thank Dr. Ji-Eun Lee (Central Instrument Facility,
Gyeongsang National University) for X-ray crystallographic analy-
sis and Mr. Byung Seok Kim for assistance with spectroscopic data
collection and analysis.
[8]
a) Kurakay Co. Ltd. Jpn. Kokai Tokkyo Koho JP 81, 113, 740
(C1. C07C69/017), 1981 [Chem. Abstr. 1982, 96, 68724b]; b)
Kurakay Co., Ltd. Jpn. Kokai Tokkyo Koho JP 82 04,945 (C1.
C07C69/013), 1982 [Chem. Abstr. 1982, 96, 199935u]; c) D. L. J.
Clive, M. Yu, M. Sannigrah, J. Org. Chem. 2004, 69, 4116–
4125.
[1] Intramolecular addition of 1,3-dicarbonyl compounds to al-
kenes by C-attack. Pd catalysis: a) T. Pei, R. A. Widenhoefer,
J. Am. Chem. Soc. 2001, 123, 11290–11291; b) T. Pei, X. Wang,
R. A. Widenhoefer, J. Am. Chem. Soc. 2003, 125, 648–649; AuI
catalysis: c) C.-Y. Zhou, C.-M. Che, J. Am. Chem. Soc. 2007,
129, 5828–5829. Intermolecular addition of 1,3-dicarbonyl
compounds to alkenes by C-attack. AuIII catalysis: d) X. Yao,
C.-J. Li, J. Am. Chem. Soc. 2004, 126, 6884–6885; e) R.-V.
Nguyen, X.-Q. Yao, D. S. Bohle, C.-J. Li, Org. Lett. 2005, 7,
673–675; CuII catalysis: f) Y. Li, Z. Yu, S. Wu, J. Org. Chem.
2008, 73, 5647–5650; PdII & PtII catalysis: g) M. E. Cucciolito,
A. DЈAmora, A. Vitagliano, Organometallics 2010, 29, 5878–
5884. Intramolecular addition of 1,3-dicarbonyl compounds to
alkenes by O-attack. Pd catalysis: h) R. M. Trend, Y. K. Ram-
tohul, E. M. Ferreira, B. M. Stoltz, Angew. Chem. 2003, 115,
2998–3001; Angew. Chem. Int. Ed. 2003, 42, 2892–2895; i)
R. M. Trend, Y. K. Ramtohul, B. M. Stoltz, J. Am. Chem. Soc.
2005, 127, 17778–17788; j) X. Han, R. A. Widenhoefer, J. Org.
Chem. 2004, 69, 1738–1740.
[2] For selected reviews on gold catalysis, see: a) A. S. K. Hashmi,
Chem. Rev. 2007, 107, 3180–3211; b) R. Skouta, C.-J. Li, Tetra-
hedron 2008, 64, 4917–4938; c) Z. Li, C. Brouwer, C. He, Chem.
Rev. 2008, 108, 3239–3265; d) A. Arcadi, Chem. Rev. 2008, 108,
3266–3325; e) D. J. Gorin, B. D. Sherry, F. D. Toste, Chem. Rev.
2008, 108, 3351–3378; f) F. Dénès, A. Pérez-Luna, F. Chemla,
Chem. Rev. 2010, 110, 2366–2447.
[3] For examples of the activation of 1,3-dicarbonyl compounds
toward either heteroaromatic or heteroatom (e.g., N, O, S, P)
nucleophilic attack by AuIII catalyst, see: a) A. Arcadi, M. Al-
fonsi, G. Bianchi, G. DЈAnniballe, F. Marinelli, Adv. Synth.
Catal. 2006, 348, 331–338; b) A. Arcadi, G. Bianchi, S. Di Giu-
seppe, F. Marinelli, Green Chem. 2003, 5, 64–67 and references
cited therein. For selected examples of the activation of the
carbonyl or imine group toward electrophilic addition by AuIII
catalysis, see: c) S. W. Youn, J. Org. Chem. 2006, 71, 2521–2523;
d) A. S. K. Hashmi, L. Schwarz, P. Rubenbauer, M. C. Blanco,
Adv. Synth. Catal. 2006, 348, 705–708; e) R. Balamurugan, V.
Gudla, Org. Lett. 2009, 11, 3116–3119; f) F. Mo, J. M. Yan, D.
[9]
a) H. Sugimoto, Pure Appl. Chem. 1999, 71, 2031–2038; b) J.
Guillon, P. Dallemagne, J.-M. Leger, J. Sopkova, P. R. Bovy, C.
Jarry, S. Rault, Bioorg. Med. Chem. 2002, 10, 1043–1050.
For the transition-metal-mediated syntheses of indenols or in-
denes through sequential coupling and cyclization between o-
halobenzoyl compounds or its equivalents and alkynes, see: in-
denols: a) L. S. Liebeskind, J. R. Gasdaska, J. S. McCallum, J.
Org. Chem. 1989, 54, 669–677; b) J. Vicente, J.-A. Abad, J. Gil-
Rubio, Organometallics 1996, 15, 3509–3519; c) L. G. Quan, V.
Gevorgyan, Y. Yamamoto, J. Am. Chem. Soc. 1999, 121, 3545–
3546; d) V. Gevorgyan, L. G. Quan, Y. Yamamoto, Tetrahedron
Lett. 1999, 40, 4089–4092; e) D. K. Rayabarapu, C.-H. Yang,
C.-H. Cheng, J. Org. Chem. 2003, 68, 6726–6731; f) K.-J.
Chang, D. K. Rayabarapu, C.-H. Cheng, J. Org. Chem. 2004,
69, 4781–4787; g) T. Matsuda, M. Makino, M. Murakami,
Chem. Lett. 2005, 34, 1294–1295; h) R. Shintani, K. Okamoto,
T. Hayashi, Chem. Lett. 2005, 34, 1416–1417; i) M. Yang, X.
Zhang, X. Lu, Org. Lett. 2007, 9, 5131–5133; indenes: j) M.
Miyamoto, Y. Harada, M. Tobisu, N. Chatani, Org. Lett. 2008,
10, 2975–2978; k) K. Tsuchikama, M. Kasagawa, K. Endo, T.
Shibata, Synlett 2010, 97–100.
[10]
[11]
[12]
[13]
For an example of the cyclization of alkenyl β-keto esters 1 by
using selenium electrophiles in the presence of the Lewis acid
FeCl3 for the synthesis of naphthols, see: S. A. Shahzad, C.
Vivant, T. Wirth, Org. Lett. 2010, 12, 1364–1367.
For selected examples showing the higher reactivity of Au cata-
lysts than those of Lewis and/or Brønsted acids, see: Y.-H.
Wang, L.-L. Zhu, Y.-X. Zhang, Z. Chen, Chem. Commun.
2010, 46, 577–579, and ref.[3b,3c,3e]
CCDC-799118 (for 2k) and -799119 (for acetylated 2lЈ) contain
the supplementary crystallographic data for this paper. These
data can be obtained free of charge from The Cambridge Crys-
tallographic Data Centre via www.ccdc.cam.ac.uk/data_
request/cif.
1
[14]
In the case of highly electron-rich substrates 1, 3, and 5 (R =
R2 = OMe for 1 and 3; R1 = OMe, R2 = H for 1 and 5),
serious decomposition occurred under all conditions examined,
Eur. J. Org. Chem. 2011, 3904–3910
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
3909