Organic & Biomolecular Chemistry
Paper
2018/47). Authors are also grateful to Prof. J. Mlynarski for
numerous comments.
(d) R. Pawlowski, F. Stanek and M. Stodulski, Molecules,
2019, 24; (e) G. Tanoury, Synthesis, 2016, 48, 2009–2025;
(f) J. Xuan, L.-Q. Lu, J.-R. Chen and W.-J. Xiao, Eur. J. Org.
Chem., 2013, 6755–6770; (g) J. Xuan and A. Studer, Chem.
Soc. Rev., 2017, 46, 4329–4346; (h) B. Zhang and A. Studer,
Chem. Soc. Rev., 2015, 44, 3505–3521; (i) L. Zhou,
M. Lokman Hossain and T. Xiao, Chem. Rec., 2016, 16, 319–
334.
Notes and references
1 (a) C. M. da Silva, D. L. da Silva, L. V. Modolo, R. B. Alves,
M. A. de Resende, C. V. B. Martins and Â. de Fátima, J. Adv.
Res., 2011, 2, 1–8; (b) S. F. Martin, Pure Appl. Chem., 2009,
81, 195–204.
8 (a) J. J. Douglas, M. J. Sevrin and C. R. J. Stephenson, Org.
Process Res. Dev., 2016, 20, 1134–1147; (b) M. D. Karkas,
J. A. Porco and C. R. J. Stephenson, Chem. Rev., 2016, 116,
9683–9747; (c) K. J. Romero, M. S. Galliher, D. A. Pratt and
C. R. J. Stephenson, Chem. Soc. Rev., 2018, 47, 7851–7866.
9 (a) X. Zhang, K. P. Rakesh, L. Ravindar and H.-L. Qin, Green
Chem., 2018, 20, 4790–4833; (b) S. Angerani and
N. Winssinger, Chemistry, 2019, 25, 6661–6672;
(c) D. M. Arias-Rotondo and J. K. McCusker, Chem. Soc.
Rev., 2016, 45, 5803–5820; (d) M. K. Bogdos, E. Pinard and
J. A. Murphy, Beilstein J. Org. Chem., 2018, 14, 2035–2064;
(e) L. W. Ciszewski, K. Rybicka-Jasinska and D. Gryko, Org.
Biomol. Chem., 2019, 17, 432–448; (f) J. I. Day,
K. Teegardin, J. Weaver and J. Chan, Org. Process Res. Dev.,
2016, 20, 1156–1163; (g) D. C. Fabry and M. Rueping, Acc.
Chem. Res., 2016, 49, 1969–1979; (h) M. N. Hopkinson,
A. Tlahuext-Aca and F. Glorius, Acc. Chem. Res., 2016, 49,
2261–2272; (i) X. Lang, J. Zhao and X. Chen, Chem. Soc.
Rev., 2016, 45, 3026–3038; ( j) Q. Liu and L.-Z. Wu, Natl. Sci.
Rev., 2017, 4, 359–380; (k) K. Luo, W.-C. Yang and L. Wu,
Asian J. Org. Chem., 2017, 6, 350–367; (l) E. B. McLean and
A.-L. Lee, Tetrahedron, 2018, 74, 4881–4902; (m) D. Ravelli,
D. Dondi, M. Fagnoni and A. Albini, Chem. Soc. Rev., 2009,
38, 1999–2011; (n) N. A. Romero and D. A. Nicewicz, Chem.
Rev., 2016, 116, 10075–10166; (o) A. Savateev and
M. Antonietti, ACS Catal., 2018, 8, 9790–9808;
(p) M. H. Shaw, J. Twilton and D. W. C. MacMillan, J. Org.
Chem., 2016, 81, 6898–6926; (q) I. K. Sideri, E. Voutyritsa
and C. G. Kokotos, Org. Biomol. Chem., 2018, 16, 4596–
4614; (r) K. L. Skubi, T. R. Blum and T. P. Yoon, Chem. Rev.,
2016, 116, 10035–10074; (s) D. Staveness, I. Bosque and
C. R. Stephenson, Acc. Chem. Res., 2016, 49, 2295–2306;
(t) J. W. Tucker and C. R. J. Stephenson, J. Org. Chem.,
2012, 77, 1617–1622; (u) J. Twilton, C. Le, P. Zhang,
M. H. Shaw, R. W. Evans and D. W. C. MacMillan, Nat. Rev.
Chem., 2017, 1, 0052; (v) T. P. Yoon, Acc. Chem. Res., 2016,
49, 2307–2315; (w) T. P. Yoon, M. A. Ischay and J. Du, Nat.
Chem., 2010, 2, 527–532; (x) K. Zeitler, Angew. Chem., Int.
Ed., 2009, 48, 9785–9789; (y) Q.-Q. Zhou, Y.-Q. Zou, L.-Q. Lu
and W.-J. Xiao, Angew. Chem., 2018, 58, 1586–1604.
2 (a) A. Otero, M. J. Chapela, M. Atanassova, J. M. Vieites and
A. G. Cabado, Chem. Res. Toxicol., 2011, 24, 1817–1829;
(b) M. E. Belowich and J. F. Stoddart, Chem. Soc. Rev., 2012,
41, 2003–2024; (c) P. J. Czerwinski and B. Furman, Chem.
Commun., 2019, 55, 9436–9439; (d) J. Iwanejko and
E. Wojaczyńska, Org. Biomol. Chem., 2018, 16, 7296–7314;
(e) R. W. Layer, Chem. Rev., 1963, 63, 489–510; (f) R. D. Patil
and S. Adimurthy, Asian J. Org. Chem., 2013, 2, 726–744;
(g) W. Qin, S. Long, M. Panunzio and S. Biondi, Molecules,
2013, 18, 12264–12289.
3 C. Godoy-Alcántar, A. K. Yatsimirsky and J. M. Lehn,
J. Phys. Org. Chem., 2005, 18, 979–985.
4 (a) T. Eicher, S. Hauptmann and A. Speicher, The Chemistry
of Heterocycles: Structures, Reactions, Synthesis, and
Applications, 3rd, Completely Revised and Enlarged Edition,
Wiley-VCH, 2013; (b) J. A. Joule and K. Mills, Heterocyclic
Chemistry,
Wiley-Blackwell,
5th
edn,
2010;
(c) A. F. Pozharskii, A. T. Soldatenkov and A. R. Katritzky,
Heterocycles in Life and Society: An Introduction to
Heterocyclic Chemistry, Biochemistry and Applications, Wiley,
2nd edn, 2011.
5 (a) B. Chen, L. Wang and S. Gao, ACS Catal., 2015, 5, 5851–
5876; (b) M. Largeron, Eur. J. Org. Chem., 2013, 5225–5235;
(c) A. H. Éll, J. S. M. Samec, C. Brasse and J.-E. Bäckvall,
Chem. Commun., 2002, 1144–1145; (d) Z. Hu and
F. M. Kerton, Org. Biomol. Chem., 2012, 10, 1618–1624;
(e) K. C. Nicolaou, C. J. Mathison and T. Montagnon,
Angew. Chem., Int. Ed., 2003, 42, 4077–4082; (f) J. S. Samec,
A. H. Ell and J. E. Backvall, Chemistry, 2005, 11, 2327–2334;
(g) T. Sonobe, K. Oisaki and M. Kanai, Chem. Sci., 2012, 3,
3249; (h) A. E. Wendlandt and S. S. Stahl, J. Am. Chem. Soc.,
2014, 136, 506–512; (i) K. Yamaguchi and N. Mizuno,
Angew. Chem., Int. Ed., 2003, 42, 1479–1483;
( j) K. Yamaguchi and N. Mizuno, Chemistry, 2003, 9, 4353–
4361; (k) G. Jiang, J. Chen, J. S. Huang and C. M. Che, Org.
Lett., 2009, 11, 4568–4571.
6 (a)
Nanostructured
S.
Ghosh,
Visible-Light-Active
Design,
Photocatalysis:
and
Catalyst
Mechanisms,
Applications, Wiley-VCH, 2018; (b) C. R. J. Stephenson, 10 (a) J. W. Beatty and C. R. J. Stephenson, Acc. Chem. Res.,
T. P. Yoon and D. W. C. MacMillan, Visible light photocataly-
sis in organic chemistry, Wiley-VCH, 2018.
2015, 48, 1474–1484; (b) X. Cheng, B. Yang, X. Hu, Q. Xu
and Z. Lu, Chemistry, 2016, 22, 17566–17570;
(c) A. G. Condie, J. C. Gonzalez-Gomez and
C. R. Stephenson, J. Am. Chem. Soc., 2010, 132, 1464–1465;
(d) B. Dutta, L. A. Achola, R. Clarke, V. Sharma, J. He,
P. Kerns and S. L. Suib, ChemCatChem, 2019, 11, 1–5;
(e) H. Hou, S. Zhu, I. Atodiresei and M. Rueping,
7 (a) M. E. Budén, J. I. Bardagi and R. A. Rossi, Curr. Org.
Synth., 2017, 14, 398–429; (b) J. R. Chen, X. Q. Hu, L. Q. Lu
and W. J. Xiao, Acc. Chem. Res., 2016, 49, 1911–1923;
(c) A. A. Festa, L. G. Voskressensky and E. V. Van der
Eycken, Chem. Soc. Rev., 2019, 48, 4401–4423;
This journal is © The Royal Society of Chemistry 2020
Org. Biomol. Chem.