at concentrations as low as 1 mM in PBS. The free fluorescent
monomer of 13 is obtained in PBS using 5% (w/v) BSA, an
additive often used in buffers for mimicking body fluids. The
strong enhancement in emission in conjunction with the red shift
in the absorption maximum in the presence of BSA observed for
13 points to dye–BSA interactions. Such a beneficial effect of dye–
protein interactions on quantum yield has been already reported
for series of BODIPY, cyanine and rhodamine labels.4,11,28
Tetrahedron Lett., 2010, 51, 1269–1272; (k) S. Atilgan, T. Ozdemir and
E. U. Akkaya, Org. Lett., 2008, 10, 4065–4067.
4 M. Tasior, J. Murtagh, D. O. Frimannsson, S. O. McDonnell and D. F.
O’Shea, Org. Biomol. Chem., 2010, 8, 522–525.
5 For selected examples, see: (a) G. Woronoff, A. El Harrak, E. Mayot, O.
Schicke, O. J. Miller, P. Soumillion, A. D. Griffiths and M. Ryckelynck,
Anal. Chem., 2011, 83, 2852–2857; (b) A. R. Katritzky, J. Cusido and
T. Narindoshvili, Bioconjugate Chem., 2008, 19, 1471–1475.
6 For selected examples, see: (a) L.-Q. Ying and B. Branchaud, Bioconju-
gate Chem., 2011, 22, 865–869; (b) F. Shao, H. Yuan, L. Josephson, R.
Weissleder and S. A. Hilderbrand, Dyes Pigm., 2011, 90, 119–122; (c) F.
Shao, R. Weissleder and S. A. Hilderbrand, Bioconjugate Chem., 2008,
19, 2487–2491; (d) W. Pham, L. Cassell, A. Gillman, D. Koktysh and
J. C. Gore, Chem. Commun., 2008, 1895–1897; (e) H. Lee, J. C. Mason
and S. Achilefu, J. Org. Chem., 2008, 73, 723–725; (f) M. V. Reddington,
Bioconjugate Chem., 2007, 18, 2178–2190; (g) C. Bouteiller, G. Clave´, A.
Bernardin, B. Chipon, M. Massonneau, P.-Y. Renard and A. Romieu,
Bioconjugate Chem., 2007, 18, 1303–1317; (h) H. Lee, J. C. Mason and
S. Achilefu, J. Org. Chem., 2006, 71, 7862–7865.
7 For selected examples, see: (a) F. Bruyneel, L. D’Auria, O. Payen, P. J.
Courtoy and J. Marchand-Brynaert, ChemBioChem, 2010, 11, 1451–
1457; (b) J. Jose and K. Burgess, J. Org. Chem., 2006, 71, 7835–7839;
(c) J. Jose, Y. Ueno and K. Burgess, Chem.–Eur. J., 2009, 15, 418–423;
(d) J. Jose, A. Loudet, Y. Ueno, R. Barhoumi, R. C. Burghardt and K.
Burgess, Org. Biomol. Chem., 2010, 8, 2052–2059.
8 For selected examples, see: (a) V. P. Boyarskiy, V. N. Belov, R. Medda,
B. Hein, M. Bossi and S. W. Hell, Chem.–Eur. J., 2008, 14, 1784–1792;
(b) K. Kolmakov, V. N. Belov, C. A. Wurm, B. Harke, M. Leutenegger,
C. Eggeling and S. W. Hell, Eur. J. Org. Chem., 2010, 3593–3610; (c) G. Y.
Mitronova, V. N. Belov, M. L. Bossi, C. A. Wurm, L. Meyer, R. Medda,
G. Moneron, S. Bretschneider, C. Eggeling, S. Jakobs and S. W. Hell,
Chem.–Eur. J., 2010, 16, 4477–4488.
9 A. Romieu, D. Brossard, M. Hamon, H. Outaabout, C. Portal and P.-Y.
Renard, Bioconjugate Chem., 2008, 19, 279–289.
10 (a) S. L. Niu, G. Ulrich, R. Ziessel, A. Kiss, P.-Y. Renard and A.
Romieu, Org. Lett., 2009, 11, 2049–2052; (b) S. L. Niu, C. Massif, G.
Ulrich, R. Ziessel, P.-Y. Renard and A. Romieu, Org. Biomol. Chem.,
2011, 9, 66–69.
11 A. Romieu, D. Tavernier-Lohr, S. Pellet-Rostaing, M. Lemaire and P.-Y.
Renard, Tetrahedron Lett., 2010, 51, 3304–3308.
12 J. M. Cardenas-Maestre and R. M. Sanchez-Martin, Org. Biomol.
Chem., 2011, 9, 1720–1722.
13 (a) M. Lopalco, E. N. Koini, J. K. Cho and M. Bradley, Org. Biomol.
Chem., 2009, 7, 856–859; (b) L.-L. Jiang, B.-L. Li, F.-T. Lv, L.-F. Dou
and L.-C. Wang, Tetrahedron, 2009, 65, 5257–5264; (c) S. J. Mason,
J. L. Hake, J. Nairne, W. J. Cummins and S. Balasubramanian, J. Org.
Chem., 2005, 70, 2939–2949; (d) S. J. Mason and S. Balasubramanian,
Org. Lett., 2002, 4, 4261–4264.
14 (a) B. Chipon, G. Clave´, C. Bouteiller, M. Massonneau, P.-Y. Renard
and A. Romieu, Tetrahedron Lett., 2006, 47, 8279–8284; corrigendum
2007, 48, 501; (b) C. A. M. Afonso, V. Santhakumar, A. Lough and
R. A. Batey, Synthesis, 2003, 2647–2654.
Conclusions and future work
In conclusion, we have developed an easy and efficient method for
the sulfonation of inexpensive commercially available or readily
synthetically accessible chromophore and/or fluorescent cores, in
order to get rapidly and with high efficacy novel water-soluble
and bio-conjugatable optical markers. Thus, the full-compatibility
of new commercial N-Fmoc a-sulfo-b-alanine building block 1
with standard SPPS protocols was demonstrated for the first time
and we found that the use of a protecting group for the sulfonic
acid moiety is not required. The exemplification of this promising
strategy to more sophisticated and fragile fluorophores by using
an hyper acid-labile resin such as 2-chlorotrityl, SASRINTM or
Sieber resin is currently under investigation. Further efforts are
also devoted to the synthesis and SPPS applications of enzyme-
labile sulfonate esters29 derived from N-Fmoc a-sulfo-b-alanine in
order to produce cell-permeable (fluorescently-labelled) peptides
of biological interest.
Acknowledgements
This work was supported by the Agence Nationale de la
Recherche (Programme Blanc 2009, ANR-09-BLAN-0081-01)
especially for a PhD grant to Ce´drik Massif, La Re´gion Haute-
Normandie via the CRUNCh program (CPER 2007–2013) and
Institut Universitaire de France (IUF). Quidd biotech company
grant of Virgile Grandclaude whose contribution to this work is
out of the field of his PhD work. We thank Camille Leroux (bache-
lor of chemistry, Universite´ de Rouen, training period April–June
2010) for the total synthesis of symmetrical sulfobenzindocyanine
dye Cy 5.5 (Cy5.205) used as a standard for quantum yield
measurements.
15 For a review, see: G. B. Fields and R. L. Noble, Int. J. Pept. Protein
Res., 1990, 35, 161–214.
16 The solubility of 1 in DMF (or NMP) was found to be ca. 100 mg cm-3
which is a value compatible with automated SPPS protocols.
17 The loading of the N-Fmoc sulfonated amino acid on the resin was
determined by spectrophotometry through UV absorbance measure-
ments of piperidine–fulvene adduct at 301 nm (e/dm3 mol-1 cm-1 7100).
18 For a recent and comprehensive review on peptide coupling agents, see:
E. Valeur and M. Bradley, Chem. Soc. Rev., 2009, 38, 606–631.
19 M. d. l. A. Laborde, P. Bermejo, D. B. Boggian and E. G. Mata,
Tetrahedron Lett., 2008, 49, 4624–4625; corrigendum 2008, 49, 7082.
20 (a) K. Sandhya and B. Ravindranath, Tetrahedron Lett., 2008, 49, 2435–
2437; (b) B. Raju and T. P. Kogan, Tetrahedron Lett., 1997, 38, 4965–
4968.
21 For a selected example, see: L. D. Tilley, O. S. Hine, J. A. Kellogg, J. N.
Hassinger, D. D. Weller, P. L. Iversen and B. L. Geller, Antimicrob.
Agents Chemother., 2006, 50, 2789–2796.
22 J. Coste and J.-M. Campagne, Tetrahedron Lett., 1995, 36, 4253–4256.
23 In our case, ESI-MS analyses of the crude reaction mixtures did not
reveal the presence of the carboxamide derivative resulting from the
coupling reaction between chromophore/fluorophore and piperidine
which is theoretically the counter-ion of sulfonic acid moiety after
Fmoc removal. However, it is also possible to include an additional
Notes and references
1 (a) R. P. Haugland, The Handbook. A Guide to Fluorescent Probes and
Labeling Technologies, Invitrogen, Oregon, 11th edn, 2006; (b) L. D.
Lavis and R. T. Raines, ACS Chem. Biol., 2008, 3, 142–155.
2 For a recent review, see: M. S. T. Goncalves, Chem. Rev., 2009, 109,
190–212.
3 (a) S. Zhu, J. Zhang, G. Vegesna, F.-T. Luo, S. A. Green and H. Liu,
Org. Lett., 2011, 13, 438–441; (b) C. Thivierge, R. Bandichhor and
K. Burgess, Org. Lett., 2007, 9, 2135–2138; (c) M. Tasior and D. F.
O’Shea, Bioconjugate Chem., 2010, 21, 1130–1133; (d) S.-L. Niu, G.
Ulrich, P. Retailleau, J. Harrowfield and R. Ziessel, Tetrahedron Lett.,
2009, 50, 3840–3844; (e) N. J. Meltola, R. Wahlroos and A. E. Soini,
J. Fluoresc., 2004, 14, 635–647; (f) L. Li, B. Nguyen and K. Burgess,
Bioorg. Med. Chem. Lett., 2008, 18, 3112–3116; (g) L. Li, J. Han, B.
Nguyen and K. Burgess, J. Org. Chem., 2008, 73, 1963–1970; (h) L. Jiao,
J. Li, S. Zhang, C. Wei, E. Hao and M. G. H. Vicente, New J. Chem.,
2009, 33, 1888–1893; (i) O. Dilek and S. L. Bane, Bioorg. Med. Chem.
Lett., 2009, 19, 6911–6913; (j) M. Brellier, G. Duportail and R. Baati,
This journal is
The Royal Society of Chemistry 2011
Org. Biomol. Chem., 2011, 9, 5337–5342 | 5341
©