Journal of the American Chemical Society
COMMUNICATION
’ AUTHOR INFORMATION
(18) Chakraborty, T. K.; Goswami, R. K.; Sreekanth, M. Tetrahedron
Lett. 2007, 48, 4075–4078.
(19) In this asymmetric synthesis, the enantiomeric excess of the
final product was similar to that obtained from the same iodopyrone
intermediate in our synthesis of SNF4435 C and D (see ref 10).
Corresponding Author
’ ACKNOWLEDGMENT
We are grateful to the National Institutes of Health (GM
74776) and to Stony Brook University for financial support of
this work. In addition, we thank the National Science Foundation
for a grant to Stony Brook University for the purchase of NMR
instrumentation (CHE-0131146).
’ REFERENCES
(1) Kawamura, T.; Fujimaki, T.; Hamanaka, N.; Torii, K.; Kobayashi,
H.; Takahashi, Y.; Igarashi, M.; Kinoshita, N.; Nishimura, Y.; Tashiro, E.;
Imoto, M. J. Antibiot. 2010, 63, 601–605.
(2) Massard, C.; Fizazi, K. Clin. Cancer Res. 2011, 17, 3876–3883.
(3) Kakinuma, K.; Hanson, C. A.; Rinehart, K. L., Jr. Tetrahedron
1976, 32, 217–222.
(4) When isolated from the organism Streptomyces spectabilis,
SNF4435 C (3a) was accompanied by its diastereomer SNF4435 D
(3b). See: (a) Kurosawa, K.; Takahashi, K.; Tsuda, E. J. Antibiot. 2001,
54, 541–547. (b) Takahashi, K.; Tsuda, E.; Kurosawa, K. J. Antibiot.
2001, 54, 548–553. (c) Kurosawa, K.; Takahashi, K.; Tsuda, E.; Tomida,
A.; Tsuruo, T. Jpn. J. Cancer Res. 2001, 92, 1235–1241. (d) Kurosawa, K.;
Takahashi, K.; Fujise, N.; Yamashita, Y.; Washida, N.; Tsuda, E.
J. Antibiot. 2002, 55, 71–77.
(5) (a) Beaudry, C. M.; Trauner, D. Org. Lett. 2002, 13, 2221–2224.
(b) Moses, J. E.; Baldwin, J. E.; Marquez, R.; Adlington, R. M.; Cowley,
A. R. Org. Lett. 2002, 4, 3731–3734. (c) Parker, K. A.; Lim, Y.-H. Org.
Lett. 2004, 6, 161–164.
(6) The [1,7]-hydrogen shift has been proposed as a step in a
biosynthetic pericyclic cascade in algae. See: Pohnert, G.; Boland, W.
Tetrahedron 1994, 50, 10235–10244.
(7) In the vitamin D2 synthesis, thermal equilibrium of the pre-
vitamin and vitamin (1:6) is obtained after 6 h of refluxing in methanol
and stirring at 35À40 °C overnight. See: Okabe, M. Org. Synth. 1999,
76, 275–286.
(8) As predicted by Woodward and Hoffman and demonstrated by
Okamura. See: (a) Woodward, R. B.; Hoffmann, R. Angew. Chem., Int.
Ed. Engl. 1969, 8, 781–853. (b) Hoeger, C. A.; Okamura, W. H. J. Am.
Chem. Soc. 1985, 107, 268–270.
(9) Houk, K. N.; Li, Y.; Evanseck, J. D. Angew. Chem., Int. Ed. Engl.
1992, 31, 682–708.
(10) Parker, K. A.; Lim, Y.-H. J. Am. Chem. Soc. 2004,
126, 15968–15969.
(11) Han, Q.; Wiemer, D. F. J. Am. Chem. Soc. 1992, 114, 7692–7697.
(12) Allred, G. D.; Liebeskind, L. S. J. Am. Chem. Soc. 1996, 118,
2748–2749.
(13) For examples in the vitamin D series, see: (a) Dmitrenko, O.;
Bach, R. D.; Sicinski, R. R.; Reischl, W. Theor. Chem. Acc. 2003,
109, 170–175 and references therein. For an unanticipated example, see:
(b) Ohmori, K.; Mori, K.; Ishikawa, Y.; Tsuruta, H.; Kuwahara, S.; Harada,
N.; Suzuki, K. Angew. Chem., Int. Ed. 2004, 43, 3167–3171. Akerling, Z. R.;
Norton, J. E.; Houk, K. N. Org. Lett. 2004, 6, 4273–4275.
(14) For examples, see the syntheses of phostriecin (fostriecin) and
cytostatin in the following leading references: (a) Gao, D.; O’Doherty,
G. A. Org. Lett. 2010, 12, 3752–3755. (b) Burke, C. P.; Swingle, M. R.;
Honkanen, R. E.; Boger, D. L. J. Org. Chem. 2010, 75, 7505–7513.
(15) Toke, L.; Jaszay, Z. M.; Petnehazy, I.; Clementis, G.; Vereczkey,
G. D.; Kovesdi, I.; Rockenbauer, A.; Kovats, K. Tetrahedron 1995,
51, 9167–9178.
(16) Qing, F.-L; Zhang, X. Tetrahedron Lett. 2001, 42, 5929–5931.
(17) For more direct approaches to diene 6 that were not successful,
see the Supporting Information.
20151
dx.doi.org/10.1021/ja209459f |J. Am. Chem. Soc. 2011, 133, 20149–20151