Notes and references
1 (a) E. Buhleier, W. Wehner and F. Vogtle, Synthesis, 1978, 155;
(b) C. J. Hawker and J. M. J. Frechet, J. Am. Chem. Soc., 1990,
112, 7638; (c) T. M. Miller and T. X. Neenan, Chem. Mater., 1990,
2, 346.
2 (a) J. M. Lehn, Angew. Chem., Int. Ed. Engl., 1988, 27, 89; (b) J. M.
Lehn, Angew. Chem., Int. Ed. Engl., 1990, 29, 1304; (c) G. R. Newkome,
Pure Appl. Chem., 1998, 70, 2337; (d) G. R. Newkome, E. F. He and
C. N. Moorefield, Chem. Rev., 1999, 99, 1689.
3 (a) F. Zeng and S. C. Zimmerman, Chem. Rev., 1997, 97, 1681;
(b) V. Balzani, H. Bandmann, P. Ceroni, C. Giansante, U. Hahn,
F.-G. Klarner, U. Muller, W. M. Muller, C. Verhaelen, V. Vicinelli
and F. Vogtle, J. Am. Chem. Soc., 2006, 128, 637.
4 (a) N. Yamaguchi, L. M. Hamilton and H. W. Gibson,
Angew. Chem., Int. Ed., 1998, 37, 3275; (b) A. M. Elizarov,
S.-H. Chiu, P. T. Glink and J. F. Stoddart, Org. Lett., 2002, 4,
679; (c) H. W. Gibson, N. Yamaguchi, L. Hamilton and
J. W. Jones, J. Am. Chem. Soc., 2002, 124, 4653; (d) K. C.-F.
Leung, F. Arico, S. J. Cantrill and J. F. Stoddart, J. Am. Chem. Soc.,
2005, 127, 5808; (e) K. C. -F. Leung, P. M. Mendes, S. N. Magonov,
B. H. Northrop, S. Kim, K. Patel, A. H. Flood, H. R. Tseng and
J. F. Stoddart, J. Am. Chem. Soc., 2006, 128, 10707.
5 (a) C. J. Pedersen, Angew. Chem., Int. Ed. Engl., 1988, 27, 1021;
(b) P. R. Ashton, P. J. Campbell, E. J. T. Chrystal, P. T. Glink,
S. Menzer, D. Philp, N. Spencer, J. F. Stoddart, P. A. Tasker and
D. J. Willianms, Angew. Chem., Int. Ed. Engl., 1995, 34, 1865.
6 (a) D. B. Amabilino and J. F. Stoddart, Chem. Rev., 1995, 95, 2725;
(b) J. D. Badjic, C. M. Ronconi, J. F. Stoddart, V. Balzani, S. Silvi
and A. Credi, J. Am. Chem. Soc., 2006, 128, 1489.
Fig. 4 Partial 1H NMR spectra (500 MHz, CDCl3, 298 K) of
(a) complex of 1 and 10 equiv. of 2-HÁPF6, (b) TEA base-treated,
and (c) TFA acid-treated. [1]0 = 3.9 mM (u = uncomplexed,
c = complexed, and * = solvent residue).
property of the complex (3.9 mM, calculated as the concentration
of 1) was monitored by 1H NMR spectroscopy. Upon
treatment of the complex with 1.5 equiv. (per crown ether)
of triethylamine (TEA), the 1H NMR spectrum (Fig. 4a)
indicated that the characteristic signals at 4.63 and 4.49 ppm
originating from the benzylic methylene protons adjacent to
+
the NH2
ion centers disappeared. The corresponding
characteristic peaks for the methylene protons adjacent to the
POSS-based secondary dibenzylammonium (–CH2–NH–CH2–)
center, resonating at 3.83 and 3.81 ppm occurred (Fig. 4b). At
the same time, the characteristic peaks for the protons on the
crown ether (Hac, Hbc and Hgc) in the complex were shifted
downfield from 4.11, 3.73 and 3.39 ppm to 4.13, 3.88 and
3.79 ppm again, respectively. These observations suggested
that 2-HÁPF6 were deprotonated and subsequently dethreaded
from the cavities of the crown ether in 1 to give the separate
products, that is, 1 and deprotonated 2-HÁPF6. Furthermore,
upon addition of 1.6 equiv. (per crown ether) of trifluoroacetic
acid (TFA) to the same solution, which is a slight excess to the
NMR sample previously treated with base, the original
1H NMR spectrum (Fig. 4c) was regenerated in every detail,
indicating that the switching process is pH-controlled and
completely reversible.
7 (a) K. S. Chichak, S. J. Cantrill, A. R. Pease, S. Chiu, G. W. V. Cave,
J. L. Atwood and J. F. Stoddart, Science, 2004, 304, 1308; (b) Y. H. Ko,
K. Kim, J. Kang, H. Chun, J. W. Lee, S. Sakamoto, K. Yamaguchi,
J. C. Fettinger and K. Kim, J. Am. Chem. Soc., 2004, 126, 1932;
(c) Y. Liu, P. A. Bonvallet, S. A. Vignon, S. I. Khan and J. F. Stoddart,
Angew. Chem., Int. Ed., 2005, 44, 3050; (d) K. Ghosh, J. M. Hu,
H. S. White and P. J. Stang, J. Am. Chem. Soc., 2009, 131, 6695.
8 G. Z. Li, L. C. Wang, H. L. Ni and C. U. Pittman Jr, J. Inorg.
Organomet. Polym., 2001, 11, 123.
9 (a) C. Zhang and R. M. Laine, J. Organomet. Chem., 1996, 521, 199;
(b) F. J. Feher, D. Soulivong, A. G. Eklund and K. D. Wyndham,
Chem. Commun., 1997, 1185; (c) I. M. Saez, J. W. Goodby and
R. M. Richardson, Chem.–Eur. J., 2001, 7, 2578; (d) I. Imae and
Y. Kawakami, J. Mater. Chem., 2005, 15, 4581; (e) K. Wada,
N. Watanabe, K. Yamada, T. Kondo and T. A. Mitsudo, Chem.
Commun., 2005, 95; (f) R. M. Laine, M. Roll, M. Asuncion,
S. Sulaiman, V. Popova, D. Bartz, D. J. Krug and P. H. J. Mutin,
J. Sol-Gel Sci. Technol., 2008, 46, 335.
10 (a) R. Huisgen, Angew. Chem., Int. Ed. Engl., 1963, 2, 633;
(b) Q. Wang, T. R. Chan, R. Hilgraf, V. V. Fokin,
K. B. Sharpless and M. G. Finn, J. Am. Chem. Soc., 2003, 125,
3192; (c) M. Meldal and C. W. Tornøe, Chem. Rev., 2008, 108,
2952; (d) V. Ervithayasuporn, J. Abe, X. Wang, T. Matsushima,
H. Murata and Y. Kawakami, Tetrahedron, 2010, 66, 9348.
11 (a) G. R. Newkome, C. N. Moorefield and F. Vogtle, in
Dendritic Molecules, VCH, Weinheim, New York, 1996;
(b) B. Trastoy, M. E. Perez-Ojeda, R. Sastre and J. L. Chiara,
Chem.–Eur. J., 2010, 16, 3833; (c) D. Heyl, E. Rikowski,
R. C. Hoffmann, J. J. Schneider and W.-D. Fessner, Chem.–Eur.
J., 2010, 16, 5544.
In summary, we have synthesized a novel dibenzo-24-
crown-8 terminated T10-POSS dendrimer and demonstrated
that it could form a stable dendritic complex with dibenzyl-
ammonium hexafluorophosphate salt based on T8-POSS.
Moreover, the complex processes could be controlled by
changing the solution pH, which would be useful for the
design of chemically controlled molecular machines.
Financial support from MEXT to X. Wang and V.
Ervithayasuporn, Grant-in Aid for Scientific Research is
gratefully acknowledged.
12 V. Ervithayasuporn, X. Wang and Y. Kawakami, Chem. Commun.,
2009, 5130.
c
1284 Chem. Commun., 2011, 47, 1282–1284
This journal is The Royal Society of Chemistry 2011