in refluxing dichloromethane in the presence of 5 mol% of
1 to give 2-phenyl-1-silaindene 7d in 63% yield (Scheme 3).9
We assume that 7d was formed by the reaction initiated with
6-endo cyclisation, as is the case with 2a–c. The resulting
intermediate G undergoes skeletal rearrangement to five-
membered gold-stabilised carbocation H, which corresponds to
B in Scheme 1. Finally, the hydride rather than the phenyl
group of H shifts onto the next carbon10 with release of the
cationic gold(I) species to afford 7d. Labelled substrate 2d-d
having a deuterium atom on the terminal carbon of the
ethynyl group was prepared and the gold(I)-catalysed reaction
was carried out. A deuterium atom was found at the C(3)
position of the product to support the mechanism shown in
Scheme 3.
the residue was subjected to preparative thin-layer chromatography on
silica gel (hexane) to afford 1,1-dimethyl-3-(2-methylprop-1-enyl)-1-
silaindene (3a, 15.8 mg, 73%).
1 (a) S. H. Yeon, J. S. Han, E. Hong, Y. Do and I. N. Jung,
J. Organomet. Chem., 1995, 499, 159; (b) N. Asao, E. Yoshikawa
and Y. Yamamoto, J. Org. Chem., 1996, 61, 4874; (c) K. Imamura,
E. Yoshikawa, V. Gevorgyan and Y. Yamamoto, J. Am. Chem.
Soc., 1998, 120, 5339; (d) N. Asao, T. Shimada, T. Shimada and
Y. Yamamoto, J. Am. Chem. Soc., 2001, 123, 10899; (e) K. Miura,
N. Fujisawa, S. Toyohara and A. Hosomi, Synlett, 2006, 1883;
(f) S. Park and D. Lee, J. Am. Chem. Soc., 2006, 128, 10664;
(g) Y. Horino, M. R. Luzung and F. D. Toste, J. Am. Chem. Soc.,
2006, 128, 11364.
2 T. Matsuda, S. Kadowaki, Y. Yamaguchi and M. Murakami,
Chem. Commun., 2008, 2744.
3 For reviews on silole derivatives, see: (a) J. Dubac, A. Laporterie
and G. Manuel, Chem. Rev., 1990, 90, 215; (b) S. Yamaguchi and
K. Tamao, J. Chem. Soc., Dalton Trans., 1998, 3693;
Other results of the intramolecular 1,1-arylsilylation reaction
are summarised in Table 1. 2-Tolyl, 3,5-xylyl and 4-biphenyl
derivatives (2e–g) gave the corresponding 2-aryl-1-silaindenes
(7e–g) in yields ranging from 42% to 64% (entries 1–3). However,
substitution with a methoxy group at the 4-position of the phenyl
ring decreased the yield of 7h to 24% (entry 4), and only a trace
amount of the product was obtained with (4-trifluoromethyl-
phenyl)silane 2i (entry 5). The reaction of triarylsilane 2j gave
the corresponding silaindene 7j in 60% yield (entry 6). A 2,20-(1,4-
phenylene)bis(1-silaindene) skeleton was constructed by the
gold(I)-catalysed reaction of 1,4-phenylenebis[(ethynylphenyl)-
silane] 2k (entry 7). On the other hand, arylsilanes equipped with
an internal alkyne moiety failed to undergo arylsilylation even at
elevated temperatures.
(c) M. Hissler, P. W. Dyer and R. Reau, Coord. Chem. Rev.,
´
2003, 244, 1; (d) S. Yamaguchi and K. Tamao, Chem. Lett., 2005,
34, 2; (e) J. Chen and Y. Cao, Macromol. Rapid Commun., 2007,
28, 1714; (f) B. Wrackmeyer and O. L. Tok, in Comprehensive
Heterocyclic Chemistry III, ed. A. R. Katritzky, C. A. Ramsden,
E. F. V. Scriven and R. J. K. Taylor, Elsevier, Oxford, 2008, vol. 3,
ch. 17, pp. 1181–1223; (g) X. Zhan, S. Barlow and S. R. Marder,
Chem. Commun., 2009, 1948.
4 For our previous reports on transition metal catalysed synthesis of
silole derivatives, see: (a) T. Matsuda, S. Kadowaki, T. Goya and
M. Murakami, Org. Lett., 2007, 9, 133; (b) T. Matsuda,
S. Kadowaki and M. Murakami, Chem. Commun., 2007, 2627;
(c) T. Matsuda, Y. Yamaguchi and M. Murakami, Synlett, 2008,
561; (d) T. Matsuda, Y. Yamaguchi, N. Ishida and M. Murakami,
Synlett, 2010, 2743. See also: (e) T. Matsuda, S. Kadowaki,
Y. Yamaguchi and M. Murakami, Org. Lett., 2010, 12, 1056.
5 For recent reviews on homogeneous gold-catalysed reactions, see:
(a) N. Bongers and N. Krause, Angew. Chem., Int. Ed., 2008,
47, 2178; (b) R. Skouta and C.-J. Li, Tetrahedron, 2008, 64, 4917;
(c) J. Muzart, Tetrahedron, 2008, 64, 5815; (d) R. A. Widenhoefer,
Chem.–Eur. J., 2008, 14, 4555; (e) Z. Li, C. Brouwer and C. He, Chem.
Rev., 2008, 108, 3239; (f) A. Arcadi, Chem. Rev., 2008, 108, 3266;
We carried out the gold(I)-catalysed reaction of 2-thienyl-
silane 2l, which exhibited an intermediary reactivity between
alkenylsilanes and arylsilanes (eqn (4)). The major product
was 3-(2-thienyl)-1-silaindene 3l (50%), which was formed via
the trans-alkenylsilylation mechanism shown in Scheme 1.
2-(2-Thienyl)-1-silaindene 7l was also isolated in 17% yield
as the minor product, which was formed via the 1,1-arylsilylation
mechanism shown in Scheme 3.
(g) E. Jimenez-Nu´ nez and A. M. Echavarren, Chem. Rev., 2008,
´
108, 3326; (h) D. J. Gorin, B. D. Sherry and F. D. Toste, Chem.
Rev., 2008, 108, 3351; (i) H. C. Chen, Tetrahedron, 2008, 64, 7847; (j)
A. S. K. Hashmi and M. Rudolph, Chem. Soc. Rev., 2008, 37, 1766;
(k) N. Marion and S. P. Nolan, Chem. Soc. Rev., 2008, 37, 1776;
(l) O. Crespo, M. C. Gimeno and A. Laguna, J. Organomet. Chem.,
2009, 694, 1588; (m) Y. Yamamoto, I. D. Gridnev, N. T. Patil and
T. Jin, Chem. Commun., 2009, 5075; (n) A. Furstner, Chem. Soc. Rev.,
¨
2009, 38, 3208; (o) P. Belmont and E. Parker, Eur. J. Org. Chem., 2009,
6075; (p) N. D. Shapiro and F. D. Toste, Synlett, 2010, 675; (q) A. Das,
S. M. A. Sohel and R.-S. Liu, Org. Biomol. Chem., 2010, 8, 960;
(r) T. C. Boorman and I. Larrosa, Chem. Soc. Rev., 2011, 40, 1910;
(s) A. Corma, A. Leyva-Perez and M. J. Sabater, Chem. Rev., 2011,
´
111, 1657; (t) M. Rudolph and A. S. K. Hashmi, Chem. Commun.,
2011, 47, 6536.
ð4Þ
6 For recent reports on the synthesis of 1-silaindene derivatives, see:
(a) S. Yamaguchi, C. Xu, H. Yamada and A. Wakamiya,
J. Organomet. Chem., 2005, 690, 5365; (b) L. Ilies, H. Tsuji, Y. Sato
and E. Nakamura, J. Am. Chem. Soc., 2008, 130, 4240; (c) M. Tobisu,
M. Onoe, Y. Kita and N. Chatani, J. Am. Chem. Soc., 2009, 131, 7506;
(d) L. Ilies, H. Tsuji and E. Nakamura, Org. Lett., 2009, 11, 3966.
7 Ruthenium-catalyzed skeletal rearrangement of the carbon
analogues of 2a giving 3-isobutenyl-1H-indenes has been reported.
See: R. J. Madhushaw, C.-Y. Lo, C.-W. Huang, M.-D. Su,
H.-C. Shen, S. Pal, S. I. R. Shaikh and R.-S. Liu, J. Am. Chem.
Soc., 2004, 126, 15560.
In conclusion, we have developed the gold(I)-catalysed
alkenyl- and arylsilylation reactions to synthesise 1-silaindene
derivatives. The substituent on silicon dictates the partitioning
between trans-1,2-addition and 1,1-addition pathways.
This work was supported by a Grant-in-Aid for Scientific
Research for Young Scientist (B) (No. 19750074) from the
Ministry of Education, Culture, Sports, Science and Technology,
Japan.
8 (a) G. Seidel, R. Mynott and A. Furstner, Angew. Chem., Int. Ed.,
¨
Notes and references
2009, 48, 2510; (b) D. Benitez, N. D. Shapiro, E. Tkatchouk, Y. Wang,
W. A. Goddard and F. D. Toste, Nat. Chem., 2009, 1, 482.
9 Gold complexes having JohnPhos (55%), XPhos (53%) and SPhos
(53%) also worked well, whereas almost no reaction occurred with
(Ph3P)AuNTf2.
y General procedure: to a Schlenk tube containing gold(I) complex 1
(4.8 mg, 5.3 mmol, 5 mol%) was added a solution of (2-ethynyl-
phenyl)dimethyl(2-methylprop-1-enyl)silane (2a, 21.6 mg, 0.10 mmol)
in dichloromethane (1.0 mL), and the mixture was stirred at rt for 2 h.
The reaction mixture was passed through a column of Florisils
(hexane : AcOEt = 10 : 1). After removal of the volatile materials,
10 Y. Xia, A. S. Dudnik, Y. Li and V. Gevorgyan, Org. Lett., 2010,
12, 5538.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 8697–8699 8699