1458
H. Li et al.
LETTER
(6) General Procedure for Preparation of Carbamate 4
K. J.; Holloway, K.; Swestock, J.; Wan, B.; Carroll, S. S.;
DiMuzio, J. M.; Graham, D. J.; Ludmerer, S. W.; Mao, S.;
Stahlhut, M. W.; Fandozzi, C. M.; Trainor, N.; Olsen, D. B.;
Vacca, J. P.; Liverton, N. J. J. Med. Chem. 2010, 53, 2443.
(b) Liverton, N. J.; Carroll, S. S.; DiMuzio, J.; Fandozzi, C.;
Graham, D. J.; Hazuda, D.; Holloway, K.; Ludmerer, S. W.;
McCauley, J. A.; McIntyre, C. J.; Olsen, D. B.; Rudd, M. T.;
Stahlhut, M.; Vacca, J. P. Antimicrob. Agents Chemother.
2010, 54, 305. (c) Holloway, M. K.; Liverton, N. J.;
Ludmerer, S. W.; McCauley, J. A.; Olsen, D. B.; Rudd,
M. T.; Vacca, J. P.; McIntyre, C. J. US 7,470,664, 2008.
(d) Belyk, K. M.; Xiang, B.; Bulger, P. G.; Leonard, W. R.
Jr.; Balsells, J.; Yin, J.; Chen, C. Org. Process Res. Dev.
2010, 14, 692.
To a solution of alcohol 5 (0.5 g, 3.9 mmol) in anhyd DMF
(3 mL) was added DSC (1.2 g, 1.2 equiv) and pyridine (63
mL, 0.2 equiv). The mixture was heated and aged at 40 °C
for 15 h until complete activation of 5 was observed as
monitored by GC (>99% conversion). The mixture was
cooled to ambient temperature for addition of H2O (3 mL),
keeping temperature below 30 °C. L-tert-Leucine (0.53 g,
1.0 equiv) and K3PO4 (1.66 g, 2 equiv), keeping the reaction
temperature below 30 °C. The reaction mixture was then
stirred at ambient temperature for 3–6 h until complete
carbamate formation was observed as monitored by HPLC
or TLC. To the reaction mixture was charged H2O (10 mL)
and EtOAc (10 mL). The organic layer was separated, and
the aqueous layer was extracted with EtOAc (5 mL). Both
organic layers were combined, washed sequentially with 1 N
HCl, H2O and brine, and dried (MgSO4). Concentration of
the organic solution afforded the carbamate 4 as an oil,
amide rotamers exists by NMR spectrum. 1H NMR (500
MHz, CDCl3): d = 0.93 (s, 6 H), 1.05 (s, 9 H), 1.35–1.38 (m,
2 H), 2.01–2.06 (m, 2 H), 3.80–3.82 (d, J = 10.0 Hz, 1 H),
3.87–3.89 (d, J = 10.0 Hz, 1 H), 3.98 (br, 0.3 H, minor
rotamer), 4.21–4.23 (d, J = 10.0 Hz, 0.7 H, major rotamer),
4.93–4.95 (d, J = 10.0 Hz, 1 H), 5.01–5.04 (d, J = 15.0 Hz, 1
H), 5.27–5.29 (d, J = 10.0 Hz, 0.7 H, major rotamer), 5.78–
(3) (a) Montalbetti, C. A. G. N.; Falque, V. Tetrahedron 2005,
61, 10827. (b) D’Addona, D.; Bochet, C. G. Tetrahedron
Lett. 2001, 42, 5227. (c) Grzyb, J. A.; Shen, M.; Yoshina-
Ishii, C.; Chi, W.; Brown, R. S.; Batey, R. A. Tetrahedron
2005, 61, 7153. (d) Batey, R. A.; Yoshina-Ishii, C.; Taylor,
S. D.; Santhakumar, V. Tetrahedron Lett. 1999, 40, 2669.
(e) Grzyb, J. A.; Batey, R. A. Tetrahedron Lett. 2008, 49,
5279. (f) Davulcu, A. H.; McLeod, D. D.; Li, J.; Katipally,
K.; Littke, A.; Doubleday, W.; Xu, Z.; McConlogue, C. W.;
Lai, C. J.; Gleeson, M.; Schwinden, M.; Parsons, R. L. Jr.
J. Org. Chem. 2009, 74, 4068.
(4) Ghosh, A. K.; Duong, T. T.; McKee, S. P.; Thompson, W. J.
Tetrahedron Lett. 1992, 33, 2781.
(5) (a) Diamanti, S.; Arifuzzaman, S.; Elsen, A.; Genzer, J.;
Vaia, R. A. Polymer 2008, 49, 3770. (b) Hamilton, G. A.;
Backes, B. J. Tetrahedron Lett. 2006, 47, 967. (c) Alsina,
J.; Rabanal, F.; Chiva, C.; Giralt, E.; Albericio, F.
Tetrahedron 1998, 54, 10125.
5.86 (m, 1 H), 6.21–6.22 (br, 0.3 H, minor rotamer). 13
C
NMR (125 MHz, CDCl3): d = 24.1, 24.3 (minor rotamer),
26.5, 26.9 (minor rotamer), 28.30, 34.0, 34.6, 38.2, 62.0,
63.3 (minor rotamer), 73.2, 73.9 (minor rotamer), 114.1,
139.2, 139.9 (minor rotamer), 156.7, 176.4, 177.2 (minor
rotamer).
(7) Ototake, N.; Nakamura, M.; Dobashi, Y.; Fukaya, H.;
Kitagawa, O. Chem. Eur. J. 2009, 15, 5090.
Synlett 2011, No. 10, 1454–1458 © Thieme Stuttgart · New York