L. F. Tietze et al.
of a sat. aq. solution of NH4Cl (5 mL) and H2O (5 mL). The aqueous
phase was extracted with EtOAc (3ꢄ10 mL), the combined organic
phases were dried over MgSO4, and the solvent removed in vacuo. Flash
column chromatography (SiO2, PE/EtOAc, 20:1) afforded the alcohol 4d
as a yellow oil (24 mg, 0.030 mmol, 65%).
J=7.7, 1.5 Hz, 1H; 8’-CH), 7.63 (d, J=8.1 Hz, 1H; 10-CH), 7.72 ppm (d,
J=8.8 Hz, 1H; 6-CH).
Optical experiments: A commercial absorption spectrometer (Varian
Cary 50 Bio) was employed to record the steady-state absorption spectra
and the photoinduced switching processes. In a typical switching experi-
ment a sample of (P,E)-2/3 was subjected to light at alternating wave-
lengths. A high-pressure Hg/Xe Lamp (Osram HBO, 200 W) combined
with appropriate optical glass filters (Schott) was used. For irradiation in
the wavelength range 310<l1 <365 nm we employed a UG11 (thickness:
1 mm) and WG320 (2 mm) filter combination. They acted as a bandpass
filter so that only the Hg lines at 313.2, 334.1, and 365.0 nm were used
for illumination. The light was focused on the sample cell by a Suprasil I
lens with a focal length of 100 mm. The new absorption band emerging
at longer wavelengths was attributed to the absorption of the switched
form. At the same time the original band at short wavelength decreases.
Back-switching was induced by using the same lamp in combination with
a GG400 (1 mm) filter. This filter provides a sharp cut-off below 400 nm
and therefore only the Hg lines at 404.6 and 435.8 nm can pass, which are
located in a spectral region in which the switched form predominantly
absorbs. The power of the filtered light was measured at the sample posi-
tion by using a calibrated power meter (Melles Griot 13PEM001): The
power was 23 mW for the UG11/WG320 filter combination and 190 mW
for the GG400 filter.
1H NMR (600 MHz, CDCl3): d=0.81 (t, J=7.3 Hz, 9H; Sn-
A
ACHUTNTGRNE[NUG CH2ACHTUNTGREN(NUGN CH2)2CH3]3), 1.20–1.29 (m,
ACHTUNGTRENNUNG
2.31 (s, 3H; 4“’-CH3), 2.80 (s, 1H; 2-OH), 4.19 (ddd, J=17.2, 9.5, 5.5 Hz,
2H; 1-CH2), 5.01 (dd, J=7.7, 3.2 Hz, 1H; 2-CH), 6.67 (d, J=8.2 Hz, 1H;
3”-CH), 6.78 (dd, J=8.3, 0.8 Hz, 1H; 6“’-CH), 6.99 (td, J=7.6, 1.0 Hz,
1H; 4”-CH), 7.04 (dd, J=8.2, 1.5 Hz, 1H; 5“’-CH), 7.13 (d, J=8.9 Hz,
1H; 3’-CH), 7.21 (ddd, J=9.1, 7.5, 1.7 Hz, 1H; 5”-CH), 7.26 (d, J=
1.8 Hz, 1H; 3“’-CH), 7.40 (ddd, J=8.0, 6.9, 1.0 Hz, 1H; 6’-CH), 7.48 (dd,
J=7.7, 1.6 Hz, 1H; 6”-CH), 7.54 (ddd, J=8.3, 6.8, 1.2 Hz, 1H; 7’-CH),
7.73 (d, J=8.1 Hz, 1H; 4’-CH), 7.77 (d, J=8.8 Hz, 1H; 5’-CH), 8.11 ppm
(d, J=8.5 Hz, 1H; 8’-CH); 13C NMR (125 MHz, CDCl3): d=10.0 (Sn-
A
2ACHTUNGTRENNUNG(CH2)2CH3]3), 13.8 (SnAHCUTNGTNERN[UGN (CH2)3CH3]3), 20.8 (4’’’-Me), 27.4 (Sn-
ACHTUNGTRENNUNG
82.6 (C-4), 89.5 (C-3), 90.1 (C-1’), 113.6 (C-1“), 115.0 (C-3’), 116.8 (C-3”),
117.6 (C-6“’), 122.4 (C-4”), 124.7 (C-6’), 128.1 (C-4’, C-7’), 129.9 (C-5“),
130.2 (C-5”’), 130.3 (C-5’), 131.2 (C-8’), 132.4 (C-8’a), 132.6 (C-2“’), 133.9
(C-6”, C-4“’), 135.4 (C-4’a), 137.8 (C-3”’), 155.3 (C-2’), 158.4 (C-2“),
159.0 ppm (C-1”’); IR (film): n=3418, 2955, 2924, 2870, 2852, 1594, 1464,
1252, 1211, 1074, 749 cmꢀ1; UV (CH3CN): lmax (loge/mꢀ1 cmꢀ1)=203.5
(4.7753), 233.0 (4.8661), 285.0 (3.9660), 323.0 (3.3766), 335.5 nm (3.3816);
MS (ESI, MeOH): m/z (%): 1641.3 (77) [2M+Na]+, 833.1 (100)
[M+Na]+; HRMS (ESI): m/z calcd for C39H47IO3Sn [M+Na]+: 833.1492;
found 833.1498.
Acknowledgements
This work was supported by the Deutsche Forschungsgemeinschaft and
the Fonds der Chemischen Industrie. M.A.D. thanks the Studienstiftung
des deutschen Volkes and the Fonds der Chemischen Industrie for a doc-
toral scholarship.
Representative procedure for the domino carbopalladation/Stille reaction
in the synthesis of 2d: A mixture of [Pd2dba3] (0.6 mg, 0.001 mmol,
0.05 equiv), PtBu3·HBF4 (0.4 mg, 0.001 mmol, 0.10 equiv), and CsF
(4.0 mg, 0.027 mmol, 2.20 equiv) in dioxane (0.2 mL) was stirred at RT
for 5 min and then a solution of 4d (9.5 mg, 0.012 mmol, 1.00 equiv) in
dioxane (0.6 mL) was added. The reaction vessel was placed in a preheat-
ed oil bath at 808C and stirred for 18 h. Afterwards, the mixture was
cooled to RT and the reaction quenched by the addition of a sat. aq. solu-
tion of NH4Cl (5 mL) and H2O (5 mL). After the extraction with EtOAc
(3ꢄ10 mL), the organic phase was dried over MgSO4 and the solvent re-
moved in vacuo. Purification by flash column chromatography (SiO2, PE/
EtOAc 20:1) yielded 2d as a yellow resin as a 1:1 mixture of the E and Z
stereoisomers (3.0 mg, 0.008 mmol, 67%).
[1] a) V. Balzani, M. Venturi, A. Credi, Molecular Devices and Ma-
chines:
A Journey into the Nanoworld, Wiley-VCH, Weinheim,
2003; b) special issue on Molecular Machines, Acc. Chem. Res. 2001,
[2] H. Dꢁrr in Photochromism: Molecules and Systems (Eds.: H. Dꢁrr,
H. Bouas-Laurent), Elsevier, Amsterdam, 1990, 1–14.
13C NMR[20] (125 MHz, CDCl3): d=20.1 (Z-CH3), 21.2 (E-CH3), 65.1 (E-
C-2, Z-C-2), 74.3 (E-C-3, Z-C-3), 113.8 (E-C-10b), 113.9 (Z-C-10b), 115.9
(Z-C-3’), 116.4 (Z-C-5), 116.6, 116.9 (Z-C-5’), 118.0, 118.0, 122.4 (E-C-7’),
122.9, 122.9, 123.1 (Z-C-3’), 123.2, 124.1, 124.2, 124.2, 124.3, 124.5, 125.1,
125.5, 125.6, 125.7 (Z-C-8), 125.8 (E-C-8), 127.3 (Z-C-8’), 127.4, 127.5 (E-
C-8’), 127.6, 127.8, 128.0 (Z-C-1’), 128.0 (E-C-6’), 128.6 (Z-C-4’, Z-C-6’),
129.2, 129.2, 129.4, 130.2 (E-C-6), 130.4 (Z-C-6), 130.6, 130.7, 131.9,
132.5, 151.1, 152.4, 153.3, 154.0, 154.0, 154.5 ppm; UV (CH3CN): lmax
(loge/mꢀ1 cmꢀ1)=226.0 (4.5158), 307.0 (3.5843), 322.5 (3.6628), 356.0 nm
(3.7936); MS (ESI, MeOH): m/z (%): 807.3 (100) [2M+Na]+, 415.1 (97)
[3] a) K. A. McNitt, K. Parimal, A. I. Share, A. C. Fahrenbach, E. H.
Witlicki, M. Pink, D. K. Bediako, C. L. Plaiser, N. Le, L. P. Heeringa,
1305–1313; b) J. M. Spruell, W. F. Paxton, J.-C. Olsen, D. Benitez,
E. Tkatchouk, C. L. Stern, A. Trabolsi, D. C. Friedman, W. A. God-
3ACTHNUTRGNEUNG
[M+Na]+; HRMS (ESI): m/z calcd for C27H20O [M+Na]+: 415.1305;
found: 415.1295.
E stereoisomer: 1H NMR (600 MHz, CDCl3): d=1.74 (d, J=7.0 Hz, 1H;
2-OH), 2.41 (s, 3H; 2’-CH3), 4.70–4.80 (m, 2H; 3-CH2), 5.83 (s, 1H; 2-
CH), 6.29 (ddd, J=8.1, 7.4, 1.3 Hz, 1H; 7’-CH), 6.52 (dd, J=7.9, 1.4 Hz,
1H; 8’-CH), 6.91–6.96 (m, 2H; 6’-CH, 8-CH), 7.10 (mc, 1H; 9-CH), 7.15
(dd, J=8.2, 1.0 Hz, 1H; 5’-CH), 7.16 (d, J=8.9 Hz, 1H; 3’-CH), 7.19–
7.24 (m, 4H; 1’-CH, 4’-CH, 7-CH, 5-CH), 7.63 (d, J=8.1 Hz, 1H; 10-
CH), 7.71 ppm (d, J=8.8 Hz, 1H; 6-CH). Z stereoisomer: 1H NMR
(600 MHz, CDCl3): d=1.52 (s, 3H; 2’-CH3), 1.77 (d, J=6.6 Hz, 1H; 2-
OH), 4.70–4.80 (m, 2H; 3-CH2), 5.85 (s, 1H; 2-CH), 6.28 (d, J=1.7 Hz,
1H; 1’-CH), 6.73 (ddd, J=8.3, 2.1, 0.6 Hz, 1H; 4’-CH), 6.91–6.96 (m, 1H;
8-CH), 7.04 (d, J=8.2 Hz, 1H; 3’-CH), 7.10 (mc, 1H; 9-CH), 7.17 (d, J=
8.8 Hz, 1H; 5-CH), 7.19–7.24 (m, 2H; 7’-CH, 7-CH), 7.29 (dd, J=8.1,
1.2 Hz, 1H; 5’-CH), 7.35 (ddd, J=8.3, 7.2, 1.5 Hz, 1H; 6’-CH), 7.43 (dd,
[5] a) Molecular Switches (Ed.: B. L. Feringa), Wiley-VCH, Weinheim,
2001; b) Organic Photochromic and Thermochromic Compounds,
Vol. 1–3 (Eds.: J. C. Crano, R. J. Guglielmetti), Springer, New York,
1999; c) B. L. Feringa, R. A. van Delden, N. Koumura, E. M. Geert-
Hung, C.-C. Lai, Y.-H. Liu, S.-M. Peng, S.-H. Chiu, Angew. Chem.
[6] a) L. F. Tietze, G. Brasche, K. M. Gericke, Domino Reactions in Or-
ganic Synthesis, Wiley-VCH, Weinheim, 2006; b) L. F. Tietze, Chem.
Angew. Chem. Int. Ed. Engl. 1993, 32, 131–163; d) M. Leibeling,
D. C. Koester, M. Pawliczek, S. C. Schild, D. B. Werz, Nat. Chem.
8460
ꢃ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2011, 17, 8452 – 8461