C O M M U N I C A T I O N S
Table 2. Brønsted-Acid-Catalyzed Asymmetric
Morita-Baylis-Hillman Reactionsa
In summary, we have developed a highly enantioselective
asymmetric Morita-Baylis-Hillman reaction involving the addition
of cyclohexenone to aldehydes. The asymmetric reaction is
catalyzed by a chiral BINOL-derived Brønsted acid. The use of
small organic molecules as catalysts to promote asymmetric
reactions is a new frontier in reaction methodology development.11
Asymmetric Brønsted acid catalysis is a recent addition to this
emerging field.12 Further development of the asymmetric MBH
reaction and elucidation of the mechanism through which the
reaction proceeds will facilitate understanding of the chemical
principles which govern this new area of catalysis. Experiments
are ongoing and will be described in due course.
Acknowledgment. This research was supported by Boston
University and by an award from the Research Corporation. N.T.M.
was supported by a Presidential Fellowship from Boston University.
We gratefully acknowledge Profs. James Panek and John Porco
(BU) for helpful comments in the preparation of this manuscript.
Supporting Information Available: Experimental procedures,
characterization of all new compounds, and HPLC separations for
compounds 5a-5h (PDF). This material is available free of charge
References
(1) (a) Morita, K.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn. 1968, 41,
2815. (b) Baylis, A. B.; Hillman, M. E. D. German Patent 2155113, 1972;
Chem. Abstr. 1972, 77, 34174q.
(2) For reviews, see: (a) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem.
ReV. 2003, 103, 811. (b) Langer, P. Angew. Chem., Int. Ed. 2000, 39,
3049. (c) The catalyzed R-hydroxyalkylation and R-animoalkylation of
activated olefins (the Morita-Baylis-Hillman reaction): Ciganek, E. In
Organic Reactions; Paquette, L. A., Ed.; Wiley: NewYork, 1997; Vol.
51, p 201. (d) Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996,
52, 8001. (e) Drews, S. E.; Roos, G. H. P. Tetrahedron 1988, 44, 4653.
(3) (a) Trost, B. M.; Thiel, O. R.; Tsui, H.-C. J. Am. Chem. Soc. 2002, 124,
11616. (b) Iwabuchi, Y.; Sugihara, T.; Esumi, T.; Hatakeyama, S.
Tetrahedron Lett. 2001, 42, 7867. (c) Iwabuchi, Y.; Furukawa, M.; Esumi,
T.; Hatakeyama, S. Chem. Commun. 2001, 2030. (d) Trost, B. M.; Tsui,
H.-C.; Toste, F. D. J. Am. Chem. Soc. 2000, 122, 3534.
a Reactions were run with 1 mmol of aldehyde, 2 mmol of cyclohexenone,
2 mmol of PEt3, and 10 mol % catalyst in THF (1 M) at -10 °C for 48 h
under Ar, followed by flash chromatography on silica gel. b Isolated yield.
c Determined by chiral HPLC analysis. d 20 mol % catalyst.
(4) (a) Brzezinski, L. J.; Rafel, S.; Leahy, J. W. J. Am. Chem. Soc. 1997,
119, 4317. (b) Yang, K.-S.; Chen, K. Org. Lett. 2000, 2, 729.
(5) (a) Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatakeyama, S. J. Am.
Chem. Soc. 1999, 121, 10219. (b) Shi, M.; Jiang, J.-K. Tetrahedron:
Asymmetry 2002, 13, 1941.
(6) (a) Yang, K.-S.; Lee, W.-D.; Pan, J.-F.; Chen, K. J. Org. Chem. 2003,
68, 915. (b) Aggarwal, V. K.; Mereu, A.; Tarver, G. J.; McCague, R. J.
Org. Chem. 1998, 63, 7183.
BINOL 2e as the catalyst (88% ee, entry 7), and employing 3,3′-
[3,5-bis(trifluoromethyl)phenyl]-catalyst 2f resulted in the greatest
levels of conversion (84% yield, entry 8).
It is interesting to note that removal of one Brønsted-acid
equivalent from the BINOL-derived catalyst, as is the case for
catalysts 3 and 4, resulted in diminished catalytic activity and no
enantioselectivity in the production of 5a (entries 9 and 10). Finally,
using trialkylphosphines such as PMe3 or P(n-Bu)3 in the reaction
afforded 5a in yields similar to that of PEt3, but lower enantio-
selectivities (50% and 64% ee, respectively).
Optimization of the reaction resulted in the identification of a
set of conditions that proved to work for a variety of aldehydes. In
general, the conditions that favored the production of 5 in high
yields and enantioselectivities were 2 equiv of PEt3 and cyclohex-
enone, and only 10-20 mol % of the chiral Brønsted acid 2e or 2f
at -10 °C in THF. Optimal results were obtained using catalyst 2f
in the MBH reaction of aliphatic aldehydes (Table 2, entries a, b),
while catalyst 2e afforded the best results with more hindered
aldehydes (entries d-f). The MBH reaction of conjugated aldehydes
such as benzaldehyde and cinnamaldehyde (entries g and h) resulted
in low yields and low enantioselectivities.
(7) Yamada, Y. M. A.; Ikegami, S. Tetrahedron Lett. 2000, 41, 2165.
(8) Matsunaga, S.; Das, J.; Roels, J.; Vogl, E. M.; Yamamoto, N.; Iida, T.;
Yamaguchi, K.; Shibasaki, M. J. Am. Chem. Soc. 2000, 122, 2252.
(9) Long, J.; Hu, J.; Shen, X.; Ji, B.; Ding, K. J. Am. Chem. Soc. 2002, 124,
10.
(10) Schrock, R. R.; Jamieson, J. Y.; Dolman, S. J.; Miller, S. A.; Bonitatebus,
P. J.; Hoveyda, A. H. Organometallics 2002, 21, 409.
(11) (a) Kobayashi, S.; Ogawa, C.; Konishi, H.; Sugiura, M. J. Am. Chem.
Soc. 2003, 125, 6610. (b) Harmata, M.; Ghosh, S. K.; Hong, X.;
Wacharasindhu, S.; Kirchhoefer, P. J. Am. Chem. Soc. 2003, 125, 2058.
(c) Brown, S. P.; Goodwin, N. C.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2003, 125, 1192. (d) Juhl, K.; Jorgensen, K. A. Angew. Chem., Int.
Ed. 2003, 42, 1498. (e) Halland, N.; Aburel, P. S.; Jorgensen, K. A. Angew.
Chem., Int. Ed. 2003, 42, 661. (f) Paras, N. A.; MacMillan, D. W. C. J.
Am. Chem. Soc. 2002, 124, 7894. (g) Paras, N. A.; MacMillan, D. W. C.
J. Am. Chem. Soc. 2001, 123, 4370. (h) Jen, W. S.; Wiener, J. J. M.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 9874. (i) Ahrendt, K.
A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122,
4243.
(12) (a) Huang, Y.; Unni, A. K.; Thadani, A. N.; Rawal, V. H. Nature 2003,
424, 146. (b) Hodous, B. L.; Fu, G. C. J. Am. Chem. Soc. 2002, 124,
10006. (c) Vachal, P.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 10012.
(d) Nakamura, S.; Kaneeda, M.; Ishihara, K.; Yamamoto, H. J. Am. Chem.
Soc. 2000, 122, 8120. (e) Nakamura, S.; Ishihara, K.; Yamamoto, H. J.
Am. Chem. Soc. 2000, 122, 8131.
JA037705W
9
J. AM. CHEM. SOC. VOL. 125, NO. 40, 2003 12095