Journal of the American Chemical Society
COMMUNICATION
California, Los Angeles, the ACS Organic Division (fellowship to
K.W.Q.), Bristol-Myers Squibb (fellowship to K.W.Q.), and the
Foote Family (fellowships to A.D.H. and K.W.Q.) for financial
support. We thank the Garcia-Garibay laboratory (UCLA) for
access to instrumentation, Prof. Justin Du Bois for helpful discus-
sions, Dr. John Greaves (UC Irvine) for mass spectra, and Xia Tian,
Haoxuan Wang, and Sonam Kumar for experimental assistance.
132, 17933–17944. (d) Bronner, S. M.; Goetz, A. E.; Garg, N. K. J. Am.
Chem. Soc. 2011, 133, 3832–3835. (e)Buszek, K. R.; Luo, D.;Kondrashov,
M.; Brown, N.; VanderVelde, D. Org. Lett. 2007, 9, 4135–4137. (f) Brown,
N.; Luo, D.; VanderVelde, D.; Yang, S.; Brassfield, A.; Buszek, K. R.
Tetrahedron Lett. 2009, 50, 63–65. (g) Buszek, K. R.; Brown, N.; Luo, D.
Org. Lett. 2009, 11, 201–204. (h) Brown, N.; Luo, D.; Decapo, J. A.;
Buszek, K. R. Tetrahedron Lett. 2009, 50, 7113–7115. (i) Garr, A. N.; Luo,
D.; Brown, N.; Cramer, C. J.; Buszek, K. R.; VanderVelde, D. Org. Lett.
2010, 12, 96–99. (j) Thornton, P. D.; Brown, N.; Hill, D.;Neuenswander,
B.; Lushington, G. H.; Santini, C.;Buszek, K. R.ACSComb. Sci.2010, DOI
10.1021/co2000289. (k) Nguyen, T. D.; Webster, R.; Lautens, M. Org.
Lett. 2011, 13, 1370–1373.
(10) Sakagami, M.; Muratake, H.; Natsume, M. Chem. Pharm. Bull.
1994, 42, 1393–1398.
(11) Wang, S.-Y.; Ji, S.-J.; Loh, T.-P. Synlett 2003, 15, 2377–2379.
(12) The C15 epimer of 12 was also obtained in 22% yield. Upon
treatment of this compound with DBU in heated toluene, a separable
mixture of 12 and epi-12 is readily obtained.
’ REFERENCES
(1) (a) Stratmann, K.; Moore, R. E.; Bonjouklian, R.; Deeter, J. B.;
Patterson, G. M. L.; Shaffer, S.; Smith, C. D.; Smitka, T. A. J. Am. Chem.
Soc. 1994, 116, 9935–9942. (b) Jimenez, J. I.; Huber, U.; Moore, R. E.;
Patterson, G. M. L. J. Nat. Prod. 1999, 62, 569–572.
(2) Welwitindolinone A isonitrile, a unique welwitindolinone that
possesses a C3 spirooxindoline core, has been synthesized independently
bytheBaran andWoodgroups: (a)Baran, P. S.; Richter, J. M. J. Am. Chem.
Soc. 2005, 127, 15394–15396. (b) Reisman, S. E.; Ready, J. M.; Hasuoka,
A.; Smith, C. J.; Wood, J. L. J. Am. Chem. Soc. 2006, 128, 1448–1449.
(3) (a) Konopelski, J. P.; Deng, H.; Schiemann, K.; Keane, J. M.;
Olmstead, M. M. Synlett 1998, 1105–1107. (b) Wood, J. L.; Holubec,
A. A.; Stoltz, B. M.; Weiss, M. M.; Dixon, J. A.; Doan, B. D.; Shamji, M. F.;
Chen, J. M.; Heffron, T. P. J. Am. Chem. Soc. 1999, 121, 6326–6327. (c)
Kaoudi, T.; Ouiclet-Sire, B.; Seguin, S.; Zard, S. Z. Angew. Chem., Int. Ed.
2000, 39, 731–733. (d) Deng, H.; Konopelski, J. P. Org. Lett. 2001,
3, 3001–3004. (e) Jung, M. E.; Slowinski, F. Tetrahedron Lett. 2001,
42, 6835–6838. (f) Lꢀopez-Alvarado, P.; García-Granda, S.; Ivarez-Rꢀua,
C.; Avenda~no, C. Eur. J. Org. Chem. 2002, 1702–1707. (g) MacKay, J. A.;
Bishop, R. L.; Rawal, V. H. Org. Lett. 2005, 7, 3421–3424. (h) Baudoux, J.;
Blake, A. J.; Simpkins, N. S. Org. Lett. 2005, 7, 4087–4089. (i) Greshock,
T. J.; Funk, R. L. Org. Lett. 2006, 8, 2643–2645. (j) Lauchli, R.; Shea, K. J.
Org. Lett. 2006, 8, 5287–5289. (k) Guthikonda, K.; Caliando, B. J.; Du
Bois, J. Abstracts of Papers, 232nd ACS National Meeting, San Francisco,
CA, September 10À14, 2006; ORGN-002. (l) Xia, J.; Brown, L. E.;
Konopelski, J. P. J. Org. Chem. 2007, 72, 6885–6890. (m) Richter, J. M.;
Ishihara, Y.; Masuda, T.; Whitefield, B. W.; Llamas, T.; Pohjakallio, A.;
Baran, P. S. J. Am. Chem. Soc. 2008, 130, 17938–17945. (n) Boissel, V.;
Simpkins, N. S.; Bhalay, G.; Blake, A. J.; Lewis, W. Chem. Commun.
2009, 1398–1400. (o) Boissel, V.; Simpkins, N. S.; Bhalay, G. Tetrahedron
Lett. 2009, 50, 3283–3286. (p) Tian, X.; Huters, A. D.; Douglas, C. J.;
Garg, N. K. Org. Lett. 2009, 11, 2349–2351. (q) Trost, B. M.; McDougall,
P. J. Org. Lett. 2009, 11, 3782–3785. (r) Brailsford, J. A.; Lauchli, R.; Shea,
K. J. Org. Lett. 2009, 11, 5330–5333. (s) Freeman, D. B.; et al.
Tetrahedron 2010, 66, 6647–6655. (t) Heidebrecht, R. W., Jr.; Gulledge,
B.; Martin, S. F. Org. Lett. 2010, 12, 2492–2495. (u) Ruiz, M.; Lꢀopez-
Alvarado, P.; Menꢀendez, J. C. Org. Biomol. Chem. 2010, 8, 4521–4523.
(4) For pertinent reviews, see: (a) Brown, L. E.; Konopelski, J. P.
Org. Prep. Proc. Intl. 2008, 40, 411–445. (b) Avendan~o, C.; Menꢀendez,
J. C. Curr. Org. Synth. 2004, 1, 65–82.
(13) Caubere, P. Acc. Chem. Res. 1974, 7, 301–308.
(14) Variations in reaction conditions (e.g., temperature, stoichiom-
etry, counterion, etc.) did not lead to improvements in the conversion of
13 to 14.
(15) The remaining balance of mass in the indolyne cyclization is
largely attributed to aminoindole products, which presumably form by
intermolecular addition of ÀNH2 to the indolyne intermediate. Attempts
to suppress this undesired reaction pathway have been unsuccessful.
(16) O-Arylated product 15 is often isolated with small amounts of
the isomeric tetrasubstituted olefin.
(17) Interestingly, the C13 epimer of substrate 13 does not undergo
conversion to the corresponding [4.3.1]-bicycle.
(18) Wulff, W. D.; Peterson, G. A.; Bauta, W. E.; Chan, K.-S.; Faron,
K. L.; Gilbertson, S. R.; Kaesler, R. W.; Yang, D. C.; Murray, C. K. J. Org.
Chem. 1986, 51, 277–279.
(19) Simpkins, S. M. E.; Kariuki, B. M.; Aricꢀo, C. S.; Cox, L. R. Org.
Lett. 2003, 5, 3971–3974.
(20) Exhaustive efforts to effect indolyne cyclization of substrates
bearing N- or C-substituents at C11 were unsuccessful, thus preventing
earlier installation of the C11 bridgehead functionality.
(21) Intermolecular functionalization methods that were tested
include bridgehead enolate chemistry, nitrene insertion reactions, and
radical halogenations.
(22) (a) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417–424.
(b) Collet, F.; Lescot, C.; Liang, C.; Dauban, P. Dalton Trans. 2010, 39,
10401–10413.
(23) For an elegant late-stage nitrene insertion in natural product
total synthesis, see: Hinman, A.; Du Bois, J. J. Am. Chem. Soc. 2003, 125,
11510–11511.
(24) For intramolecular nitrene CÀH insertion reactions using
carbamate substrates, see: (a) Espino, C. G.; Du Bois, J. Angew. Chem.,
Int. Ed. 2001, 40, 598–600. (b) Li, Z.; Capretto, D. A.; Rahaman, R.; He,
C. Angew. Chem., Int. Ed. 2007, 46, 5184–5186. (c) Cui, Y.; He, C. Angew.
Chem., Int. Ed. 2004, 43, 4210–4212.
(5) Bhat, V.; Allan, K. M.; Rawal, V. H. J. Am. Chem. Soc. 2011, 133,
5798–5801.
(25) Ketone 4 likely forms by a pathway involving initial insertion
into the R CÀH bond; for related observations, see: Hinman, A. W. Ph.
D. Dissertation, Stanford University, Stanford, CA, 2004.
(26) Kim, S.; Yi, K. Y. J. Org. Chem. 1986, 51, 2613–2615.
(27) A sample of natural 1 was not available for direct comparison.
(6) (a) Smith, C. D.; Zilfou, J. T.; Stratmann, K.; Patterson, G. M. L.;
Moore, R. E. Mol. Pharmacol. 1995, 47, 241–247. (b) Zhang, X.; Smith,
C. D. Mol. Pharmacol. 1996, 49, 288–294.
(7) For a model system study of this transformation, see ref 3p.
(8) For seminal indolyne studies, see: (a) Julia, M.; Huang, Y.;
Igolen, J. C. R. Acad. Sci., Ser. C 1967, 265, 110–112. (b) Igolen, J.; Kolb,
A. C. R. Acad. Sci., Ser. C 1969, 269, 54–56. (c) Julia, M.; Le Goffic, F.;
Igolen, J.; Baillarge, M. Tetrahedron Lett. 1969, 10, 1569–1571. For
related studies, see: (d) Julia, M.; Goffic, F. L.; Igolen, J.; Baillarge, M. C.
R. Acad. Sci., Ser. C 1967, 264, 118–120. (e) Julia, M.; Igolen, J.; Kolb, M.
C. R. Acad. Sci., Ser. C 1971, 273, 1776–1777.
(9) For recent indolyne studies, see: (a) Bronner, S. M.; Bahnck, K. B.;
Garg, N. K. Org. Lett. 2009, 11, 1007–1010. (b) Cheong, P. H.-Y.; Paton,
R. S.; Bronner, S. M.; Im, G.-Y.; Garg, N. K.; Houk, K. N. J. Am. Chem. Soc.
2010, 132, 1267–1269. (c) Im, G.-Y.; Bronner, S. M.; Goetz, A. E.; Paton,
R. S.; Cheong, P. H.-Y.; Houk, K. N.; Garg, N. K. J. Am. Chem. Soc. 2010,
15799
dx.doi.org/10.1021/ja206538k |J. Am. Chem. Soc. 2011, 133, 15797–15799