10.1002/ejoc.201601604
European Journal of Organic Chemistry
SHORT COMMUNICATION
(Scheme 4). In contrast with these results, ester substrates (4e),
imines (4f) or alkenes bearing ciano (β-cianostyrene) or nitro
groups (β-nitrostyrene) were not suitable for this radical
cyclopropanation reaction.[17]
Acknowledgements
ICIQ Foundation, CERCA Programme (Generalitat de
Catalunya), MINECO (Severo Ochoa Excellence Accreditation
2014-2018; SEV-2013-0319), the CELLEX Foundation through
the CELLEX-ICIQ high-throughput experimentation platform and
the ICIQ Starting Career Program are gratefully acknowledged
for financial support. ADH thanks CELLEX Foundation for a
post-doctoral contract. We thank also Ana Andrea Escobar for
the preparation of some starting materials and to the Research
Support Area of ICIQ.
O
O
1 mol % Ru(bpy)3(PF6)2
CH2I2
i-Pr2EtN, Na2S2O3
CH3CN/H2O
21 W CFL, 18 h, rt
4
2
5
O
O
O
H
Me
Ni-Pr2
MeO
Me
MeO
Keywords: photoredox catalysis • carbenoid • cyclopropanation
5a 72%
5b 75%
5c 51%
• radical • cyclopropane
Ts
N
O
O
[1]
[2]
a) D. Y. -K. Chen, R. H. Pouwer, J. A. Richard, Chem. Soc. Rev. 2012,
41, 4631. b) J. Salaün, Cyclopropane Derivatives and their Diverse
Biological Activities; Topics in Current Chemistry, Vol. 207 Springer-
Verlag Berlin Heidelberg, 2000.
OMe
H
Me
MeO
5d 56%
5e 0%
5f 0%
For a review, see: a) H. Lebel, J. F. Marcoux, C. Molinaro, A. B.
Charette, Chem. Rev. 2003, 103, 977. For recent catalytic
cyclopropanation processes, see: b) C. R. Solorio-Alvarado, Y. Wang,
A. M. Echavarren, J. Am. Chem. Soc. 2011, 133, 11952. c) R. Vicente,
J. González, L. Riesgo, J. González, L. A. López, Angew. Chem. Int.
Ed. 2012, 51, 8063. d) P. S. Coelho, E. M. Brustad, A. Kannan, F. H.
Arnold, Science 2013, 339, 307. e) P. Cotugno, A. Monopoli, F.
Ciminale, A. Milella, A. Nacci, Angew. Chem. Int. Ed. 2014, 53, 13563.
f) T. Piou, T. Rovis, J. Am. Chem. Soc. 2014, 136, 11292. g) M. J.
González, J. González, L. A. López, R. Vicente, Angew. Chem. Int. Ed.
2015, 54, 12139. h) S. Manna, A. P. Antonchick, Angew. Chem. Int. Ed.
2015, 54, 14845. i) G. Xu, P. Renaud, Angew. Chem. Int. Ed. 2016, 55,
3657. j) P. Bajaj, G. Sreenilayam, V. Tyagi, R. Fasan, Angew. Chem.
Int. Ed. 2016, 55,16110. k) J. M. Sarria Toro, C. García-morales, M.
Raducan, E. S. Smirnova, A. M. Echavarren, Angew. Chem. Int. Ed.
2017, DOI: 10.1002/anie.201611705.
Scheme 4. Catalytic cyclopropanation of α,β-unsaturated carbonyls.
Finally, we wondered whether the catalytic concept depicted in
Scheme 1 for radical carbenoid generation, could be generalized
by using alternative gem-diiodoalkanes. This generalization
would allow access to complex cyclopropane cores using a
simple and novel catalytic approach. Preliminary studies have
revealed that commercially available 1,1-diiodoethane (6)
worked well under the same reaction conditions developed in
Table 1 and produced tri-substituted cyclopropane 7 in 69%
isolated yield as a mixture of diastereoisomers (Scheme 5). This
result suggested the involvement of a new radical carbenoid
species 8, whose reactivity is analogous to the iodomethyl
radical carbenoid ICH2().
[3]
a) H. E. Simmons, R.D. Smith, J. Am. Chem. Soc. 1958, 80, 5323. b) H.
E. Simmons, R. D. Smith, J. Am. Chem. Soc. 1959, 81, 4256. c) J.
Furukawa, N. Kawabata, J. Nishimura, Tetrahedron Lett. 1966, 7, 3353.
d) S. E. Denmark, J. P. Edwards, J. Org. Chem. 1991, 56, 6974. e) A. B.
Charette, S. Francoeur, J. Martel, N. Wilb, Angew. Chem. Int. Ed. 2000,
39, 4539; Angew. Chem. 2000, 112, 4713; f) A. B. Charette, A.
Beauchemin, S. Francoeur, J. Am. Chem. Soc. 2001, 123, 8139. g) L.
P. B. Beaulieu, J. F. Schneider, A. B. Charette, J. Am. Chem. Soc.
2013, 135, 7819. h) S. Taillemaud, N. Diercxsens, A. Gagnon, A. B.
Charette, Angew. Chem. Int. Ed. 2015, 54, 14108.
Me
1 mol % Ru(bpy)3(PF6)2
O
O
H
Me CHI2 (6)
i-Pr2EtN, Na2S2O3
CH3CN, H2O
I
8
PMP
PMP
Me
R
R
iodoethyl radical
21 W CFL, 18 h, rt
7 69% (2:1)
1t R = morpholinyl
Scheme 5. Cyclopropanation with 1,1-diiodoethane (6).
[4]
[5]
a) S. E. Denmark, R. A. Stavenger, A. M. Faucher, J. P. Edwards, J.
Org. Chem. 1997, 62, 3375. b) E. V. Guseva, N. V. Volchkov, Y. V.
Tomilov, O. M. Nefedov, Eur. J. Org. Chem. 2004, 3136. c) G. H. Fang,
Z. J. Yan, M. Z. Deng, Org. Lett. 2004, 6, 357. d) B. Morandi, E. M.
Carreira, Science 2012, 335, 1471.
Conclusions
For selected examples with sulfur ylides, see: a) E. J. Corey, M.
Chaykovsky, J. Am. Chem. Soc. 1962, 84, 3782. b) E. J. Corey, M.
Chaykovsky, J. Am. Chem. Soc. 1965, 87, 1353. c) V. K. Aggarwal, E.
Alonso, G. Fang, M. Ferrara, G. Hynd, M. Porcelloni, Angew. Chem. Int.
Ed. 2001, 40, 1433. d) Kunz, R. K.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2005, 127, 3240. For a review, see: e) Y. G. Gololobov, A. N.
Nesmeyanov, V. P. Lysenko, I. E. Boldeskul, Tetrahedron 1987, 43,
4057. For selected examples with nitrogen ylides, see: f) C. D.
Papageorgiou, S. V. Ley, M. J. Gaunt, Angew. Chem. Int. Ed. 2003, 42,
828. g) J. M. Sarria Toro, T. den Hartog, P. Chen, Chem. Commun.
2014, 50, 10608.
In summary, we have successfully developed
a
new
cyclopropanation reaction of α,β-unsaturated carbonyl
compounds with CH2I2 by means of photoredox catalysis.
Notable features of this process are the mild reaction conditions
and excellent selectivity profile. The process involves the
catalytic generation of radical carbenoid species, which are able
to transfer a CH2 in a stereocontrolled manner. Additionally, we
were able to transfer for the first time, a CH(Me) group by using
commercial 1,1-diiodoethane.
[6]
For recent alternative catalytic methylenation processes, see: a) T. Den
Hartog, J. M. S. Toro, P. Chen, Org. Lett. 2014, 16, 1100. b) S. A.
This article is protected by copyright. All rights reserved.