boronic acid,5 allylic alkoxide,6 allylic alcohols,7 and vinyl
metals8 were reported.9 An addition reaction of silanols
to enynes to produce 1,3-silyloxydienes was reported.10
Recently, Gaunt et al. reported a scandium-catalyzed
tandem hydrosilyloxylation/aldol reaction with an acti-
vated alkyne.11 We envisioned that an aldol or a Mannich
reaction upon the catalytic formation of enol silyl ethers
from alkynes would be an attractive tandem process12 to
give a variety of structural motifs. To the best of our
knowledge, no example of a hydrosilyloxylation/aldol
and hydrosilyloxylation/Mannich tandem process has
been described, and encouraged by recent advances in
tandem processes we decided to explore such a sequence.
Herein, we report the Au-catalyzed13 tandem hydro-
silyloxylation/aldol and hydrosilyloxylation/Mannich re-
action starting from readily available alkynes in one pot
under extremely mild conditions.
Table 1. Optimization of Intramolecular Hydrosilyloxylationa
entry
cat. (mol %)
AuCl3/AgOTf
time (h)
yield (%)
1
12
0.6
1
23b
40
2
Ph3PAuCl/AgOTf
Ph3PAuCl/AgPF6
Ph3PAuCl/AgAsF6
Ph3PAuCl/AgSbF6
Ph3PAuCl/AgBF4
Ph3PAuCl/AgNTf2
(C6F5)3PAuCl/AgNTf2
(C6F5)3PAuCl/AgOTf
(C6F5)3PAuCl/AgOTf
AgOTf
3
39
4
0.3
12
12
2
36
5
14 (66)c
13 (64)c
57
6
7
8
0.5
0.17
0.5
3
43
9
88
10
11
12
86d
0e
To find out the mosteffective catalyst for the cyclization,
an initial study was carried out with 1a in DCE (Table 1)
and a wide range of gold catalysts along with silver salts
TfOH
24
0e
a Au and Ag catalyst (5 mol % each) was used unless otherwise noted.
b AgOTf (15 mol %) was used. c Recovery yield of 1a. d (C6F5)3PAuCl
(1 mol %) and AgOTf (1 mol %) were used. e AgOTf and TfOH
(5 mol %) were used.
ꢀ
ꢀ
(7) (a) Crevisy, C.; Wietrich, M.; Le Boulaire, V.; Uma, R.; Gree, R.
ꢀ
ꢀ
Tetrahedron Lett. 2001, 42, 395. (b) Uma, R.; Davies, M.; Crevisy, C.;
Gree, R. Tetrahedron Lett. 2001, 42, 3069. (c) Yang, X. F.; Wang, M.;
Varma, R. S.; Li, C.-J. Org. Lett. 2003, 5, 657. (d) Cuperly, D.; Petrignet,
ꢀ
ꢀ
J.; Crevisy, C.; Gree, R. Chem.;Eur. J. 2006, 12, 3261. (e) Petrignet, J.;
and protic acids were examined. A gold catalyst system of
(C6F5)3PAuCl/AgOTf (1 mol % each) turned out to be the
most effective to selectively provide an
ꢀ
Roisnel, T.; Gree, R. Tetrahedron Lett. 2006, 47, 7745. (f) Petrignet, J.;
Roisnel, T.; Gree, R. Chem.;Eur. J. 2007, 13, 7374. (g) Bartoszewicz,
A.; Livendahl, M.; Martın-Matute, B. Chem.;Eur. J. 2008, 14, 10547.
(h) Ahlsten, N.; Martın-Matute, B. Adv. Synth. Catal. 2009, 351, 2657.
(i) Cao, H. T.; Thierry, R.; Gree, R. Lett. Org. Chem. 2009, 6, 507. (j)
ꢀ
ꢀ
ꢀ
Mac, D. H.; Roisnel, T.; Branchadell, V.; Gree, R. Synlett 2009, 1969. (k)
Yang, X.-F.; Wang, M.; Varma, R. S.; Li, C.-J. Org. Lett. 2003, 5, 657.
(8) (a) Hoffmann, R. W.; Ditrich, K. Tetrahedron Lett. 1984, 25,
1781. (b) Boldrini, G. P.; Lodi, L.; Tagliavini, E.; Trombini, C.; Umani-
Ronchi, A. J. Organomet. Chem. 1987, 336, 23. (c) Basile, T.; Biondi, S.;
Boldrini, G. P.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A.
J. Chem. Soc., Perkin Trans. 1 1989, 1025.
(9) (a) Murai, S.; Sonoda, N. Angew. Chem., Int. Ed. 1979, 18, 837. (b)
Mukaiyama, T.; Murakami, M.; Oriyama, T.; Yamaguchi, M. Chem.
Lett. 1981, 1193. (c) Hudrlik, P. F.; Hudrlik, A. M.; Kulkarni, A. K.
J. Am. Chem. Soc. 1985, 107, 4260. (d) Okamoto, K.; Hayashi, T. Org.
Lett. 2007, 9, 5067. (e) Hirano, K.; Yorimitsu, H.; Oshima, K. Org. Lett.
2008, 10, 2199. (f) Calad, S. A.; Woerpel, K. A. J. Am. Chem. Soc. 2005,
127, 2046.
(10) Han, Z.-H.; Chen, D.-F.; Wang, Y.-Y.; Guo, R.; Wang, P.-S.;
Wang, C.; Gong, L.-Z. J. Am. Chem. Soc. 2012, 134, 6532.
(11) Grimster, N. P.; Wilton, D. A. A.; Chan, L. K. M.; Godfrey,
C. R. A.; Green, C.; Owen, D. R.; Gaunt, M. J. Tetrahedron 2010, 66,
6429.
6-endo addition product 2a in 86% yield in DCE (0.25 M)
at room temperature within 30 min without detection of a
5-exo addition product (entry 10). It is noteworthy that
high dilution conditions are not necessary in the present
intramolecular cyclization.10,14 AgOTf and triflic acid
(5 mol % each) were totally ineffective (entries 11 and 12).
In addition, the effects of disubstituents tethered to silicon on
cyclization were next examined. Under the optimized reac-
tion conditions, the alkynyl silanol 1b having a dimethyl
group on the silicon atom was converted to an enol silyl ether
2b in 58% yield along with disiloxane in 26% yield (eq 1).
When an alkynyl silanol 1c bearing a sterically bulky diiso-
propyl group on silicon was treated with the gold catalyst, the
corresponding disiloxane was not observed as anticipated
while the cyclization (2c, 60% yield) was not complete (eq 2).
With this newly developed protocol in hand, we sub-
sequently examined a variety of alkynyl silanols for the
(12) For recent reviews, see: (a) Lee, J. M.; Na, Y.; Han, H.; Chang,
S. Chem. Soc. Rev. 2004, 33, 302. (b) Ajamian, A.; Gleason, J. L. Angew.
Chem., Int. Ed. 2004, 43, 3754. (c) Fogg, D. E.; dos Santos, E. N. Coord.
€
Chem. Rev. 2004, 248, 365. (d) De Meijere, A.; von Zezschwitz, P.; Brase,
S. Acc. Chem. Res. 2005, 38, 413. (e) Wasilke, J.-C.; Obrey, S. J.; Baker,
R. T.; Bazan, G. C. Chem. Rev. 2005, 105, 1001.
(13) (a) Dyker, G.; Hilderbrandt, D.; Liu, J.; Merz, K. Angew. Chem.,
€
Int. Ed. 2003, 42, 4399. (b) Hoffmann-Roder, A.; Krause, N. Org.
Biomol. Chem. 2005, 3, 387. (c) Zhang, L.; Sun, J.; Kozmin, A. S. Adv.
Synth. Catal. 2006, 348, 2271. (d) Hashmi, A. S. K.; Hutchings,
€
G. J. Angew. Chem., Int. Ed. 2006, 45, 7896. (e) Furstner, A.; Davies,
ꢀ
ꢀ~
P. W. Angew. Chem., Int. Ed. 2007, 46, 3410. (f) Jimenez-Nunez, E.;
Echavarren, A. M. Chem. Commun. 2007, 333. (g) Gorin, D. J.; Toste,
F. D. Nature 2007, 446, 395. (h) Hashmi, A. S. K. Chem. Rev. 2007, 107,
3180. (i) Shen, H. C. Tetrahedron 2008, 64, 3885. (j) Skouta, R.; Li, C.-J.
Tetrahedron 2008, 64, 4917. (k) Shen, H. C. Tetrahedron 2008, 64, 7847.
(l) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239. (m) Kim, C.;
Bae, H. J.; Lee, J. H.; Jeong, W.; Kim, H.; Sampath, V.; Rhee, Y. H.
J. Am. Chem. Soc. 2009, 131, 14660. (n) Yeom, H.-S.; So, E.; Shin, S.
Chem.;Eur. J. 2011, 17, 1764. (o) Jeong, J.; Yeom, H.-S.; Kwon, O.;
Shin, S. Chem.;Asian J. 2011, 6, 1977. (p) Yeom, H.-S.; Koo, J.; Park,
H.-S.; Wang, Y.; Liang, Y.; Yu, Z.-X.; Shin, S. J. Am. Chem. Soc. 2012,
134, 208. (q) Kim, H.; Rhee, Y. H. J. Am. Chem. Soc. 2012, 134, 4011.
(14) In ref 10, an addition reaction of silanol to enyne was carried out
under high dilution (0.05 M in fluorobenzene) conditions.
Org. Lett., Vol. 14, No. 15, 2012
3913