LETTER
Carboxylation/Cyclization Cascade of Allenyl Aldehyde
1425
Carboxylative cyclization of 1d with CO2 in the presence regioselective manner and provides a novel method for
of a stoichiometric amount of Ni(cod)2 and TMEDA pro- the synthesis of bicyclic a-methylene-g-lactones. Further
ceeded smoothly to afford the desired cyclized product 3d studies on expansion of the scope of this procedure are
in 74% yield as a mixture of two stereoisomers. Although now in progress.
ZnCl2 was necessary, carboxylation of 1e also gave the
desired product 4e in 33% yield. Furthermore, the present
system was applicable to the synthesis of benzene-fused
bicyclic compounds (Table 2, entries 3–5). Benzaldehyde
Supporting Information for this article is available online at
derivative 1f, having a terminal allene moiety at the ortho
position, smoothly reacted with CO2 under similar condi-
tions to afford 3f in 85% yield. Interestingly, in the reac-
tions of 1g and 1h having an internal allene moiety, the
cyclization process proceeded to give 3g and 3h in 66%
and 74% yields, respectively. In both cases, configuration
of the newly formed double bond was controlled to be in
the E-form. The results of carboxylation of 1c in the ab-
sence of ZnCl2 (Scheme 4, Equation 1) strongly supported
our initial hypothesis of the carboxylation/cyclization cas-
cade shown in Scheme 1. However, the high regio- and
E-selectivity observed in the reactions of 1g and 1h
(Table 2, entries 4 and 5) suggest another possible reac-
tion pathway. Montgomery and co-workers reported a
nickel-catalyzed cyclization of allenyl aldehydes that in-
volved an oxidative cyclization of the allene and aldehyde
moieties to low-valent nickel species as the first step of
the catalytic cycle.8a Allenyl aldehydes 1g or 1h would
also be able to react with low-valent nickel species in a
similar way before the reaction with CO2 (Scheme 5). To
undergo such reaction, low-valent nickel species would be
preferably placed at the opposite side of the ‘R’ group due
to steric repulsion (Scheme 5, intermediate 7). Thus, oxi-
dative cyclization from 7 would give oxa-nickelacycle in-
termediate 8. Then insertion of CO2 into the nickel–
carbon bond would proceed in a stereospecific manner to
form 9, which would afford 3g or 3h after hydrolysis and
esterification. This cyclization/carboxylation cascade
pathway cannot be excluded in the reactions of other
allenyl aldehydes. Thus, in the actual system, the reaction
course might involve one or both cascades depending on
the substrate used.
References and Notes
(1) Present address: Organometallic Chemistry Laboratory,
RIKEN Advanced Science Institute, Hirosawa 2-1, Wako,
Saitama 351-0198, Japan.
(2) For reviews, see: (a) Braunstein, P.; Matt, D.; Nobel, D.
Chem. Rev. 1988, 88, 747. (b) Gibson, D. H. Chem. Rev.
1996, 96, 2063. (c) Yin, X.; Moss, J. R. Coord. Chem. Rev.
1999, 181, 27. (d) Sakakura, T.; Choi, J.-C.; Yasuda, H.
Chem. Rev. 2007, 107, 2365. (e) Hou, Z.; Ohishi, T. in
Comprehensive Organometallic Chemistry III, Vol. 10;
Crabtree, R. H.; Mingos, D. M. P.; Ojima, I., Eds.; Elsevier:
Oxford, 2007, 537–555.
(3) For recent examples for CO2 incorporation reactions, see:
(a) Ukai, K.; Aoki, M.; Takaya, J.; Iwasawa, N. J. Am.
Chem. Soc. 2006, 128, 8706. (b) Greco, G. E.; Gleason, B.
L.; Lowery, T. A.; Kier, M. J.; Hollander, L. B.; Gibbs, S. A.;
Worthy, A. D. Org. Lett. 2007, 9, 3817. (c) Takaya, J.;
Tadami, S.; Ukai, K.; Iwasawa, N. Org. Lett. 2008, 10,
2697. (d) Ohishi, T.; Nishiura, M.; Hou, Z. Angew. Chem.
Int. Ed. 2008, 47, 5792. (e) Ochiai, H.; Jang, M.; Hirano, K.;
Yorimitsu, H.; Oshima, K. Org. Lett. 2008, 10, 2681.
(f) Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2008, 130,
7826. (g) Eghbali, N.; Eddy, J.; Anastas, P. T. J. Org. Chem.
2008, 73, 6932. (h) Kobayashi, K.; Kondo, Y. Org. Lett.
2009, 11, 2035. (i) Metzger, A.; Bernhardt, S.; Manolikakes,
G.; Knochel, P. Angew. Chem. Int. Ed. 2010, 49, 4665.
(j) Boogaerts, I. I. F.; Nolan, S. P. J. Am. Chem. Soc. 2010,
132, 8858. (k) Vechorkin, O.; Hirt, N.; Hu, X. Org. Lett.
2010, 12, 3567. (l) Zhang, L.; Cheng, J.; Ohishi, T.; Hou, Z.
Angew. Chem. Int. Ed. 2010, 49, 8670. (m) Boogaerts, I. I.
F.; Fortman, G. C.; Furst, M. R. C.; Cazin, C. S. J.; Nolan,
S. P. Angew. Chem. Int. Ed. 2010, 49, 8674. (n) Fujihara,
T.; Xu, T.; Semba, K.; Terao, J.; Tsuji, Y. Angew. Chem. Int.
Ed. 2011, 50, 523. (o) Mizuno, H.; Takaya, J.; Iwasawa, N.
J. Am. Chem. Soc. 2011, 133, 1251.
(4) For a review on nickel-mediated carboxylation, see:
Takimoto, M.; Mori, M. In Modern Organonickel
Chemistry; Tamaru, Y., Ed.; Wiley-VCH: Weinheim, 2005,
205–223.
H
Ni
O
O
Ni
R
1g
or
1h
Ni(0)
R
(5) (a) Takimoto, M.; Mori, M. J. Am. Chem. Soc. 2001, 123,
2895. (b) Takimoto, M.; Shimizu, K.; Mori, M. Org. Lett.
2001, 3, 3345. (c) Takimoto, M.; Mori, M. J. Am. Chem.
Soc. 2002, 124, 10008. (d) Shimizu, K.; Takimoto, M.;
Mori, M. Org. Lett. 2003, 5, 2323. (e) Takimoto, M.;
Kawamura, M.; Mori, M. Org. Lett. 2003, 5, 2599.
(f) Takimoto, M.; Kawamura, M.; Mori, M. Synthesis 2004,
791. (g) Shimizu, K.; Takimoto, M.; Sato, Y.; Mori, M. Org.
Lett. 2005, 7, 195. (h) Takimoto, M.; Kawamura, M.; Mori,
M.; Sato, Y. Synlett 2005, 2019. (i) Takimoto, M.;
Nakamura, Y.; Kimura, K.; Mori, M. J. Am. Chem. Soc.
2004, 126, 5956. (j) Takimoto, M.; Mizuno, T.; Sato, Y.;
Mori, M. Tetrahedron Lett. 2005, 46, 5173. (k) Takimoto,
M.; Mizuno, T.; Mori, M.; Sato, Y. Tetrahedron 2006, 62,
7589.
7
8
Ni
O
O
O
O
Ni
O
C
O
CO2
R
R
9
Scheme 5 Cyclization/carboxylation cascade
In summary, nickel-mediated cyclization of allenyl alde-
hydes that involved a CO2 incorporation process was de-
veloped. The reaction proceeds under mild conditions in a
Synlett 2011, No. 10, 1423–1426 © Thieme Stuttgart · New York