2011, 54, 3451; (g) Whitehead, T. P.; Havel, C.; Metayer, C.; Benowitz,
N. L.; Jacob, P. Chem. Res. Toxicol. 2015, 28, 1007.
Based on the above observations and previous reports9, 14, a
plausible pathway for the formation of ethyl 5-(2-
hydroxybenzoyl)-2-phenylnicotinate 5a is proposed in scheme 2.
Initially, a zinc-mediated Blaise reaction between benzonitrile 1
and ethyl bromoacetate 2 takes place to give an enamino ester
intermediate A. Secondly, intermediate B is afforded through
Knoevenagel-type reaction of the Blaise intermediate A and 3-
formylchromone 3, Then, intermediate B undergoes a subsequent
2.
(a) Kumar, A.; Maurya, R. A. Synlet 2008, 883; (b) Debache, A.;
Boulcina, R.; Belfaitah, A.; Rhouati, S.; Carboni, B. Synlett 2008, 509.
3. Zecher, W.; Krohnke, F. Angew. Chem., Int. Ed. 1963, 2, 380.
4. Esquivias, J.; Arrays, R. G.; Carretero, J. C. J. Am. Chem. Soc. 2007,
129, 1480.5. (a) Cho, S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc.
2008, 130, 9254; (b) Mousseau, J. J.; Bull, J. A.; Charette, A. B. Angew.
Chem., Int. Ed. 2010, 49, 1115; (c) Yamada, S.; Murakami, K.; Itami, K.
Org. Lett. 2016, 18, 2415; (d) Liu, S. S.; Tzschucke, C. C. Eur. J. Org.
Chem. 2016, 21, 3509.
intramolecular
transformation
to
produce
N-zincated
intermediate C, which could facilitate a 6π electrocyclization to
afford intermediate D. Finally, the product 5a is given via C–O
bond cleavage and elimination of BrZnOH after workup.
Accordingly, 3-cyanochromone participates the tandem reaction
through a very similar pathway(scheme 3).
6. Blaise, E. E. C. R. Hebd. Seances Acad. Sci. 1901, 132, 478.
7. (a) Rathke, M. W.; Weipert, P. in Comp. Org. Synth., ed. B. M. Trost,
Pergamon, Oxford, 1991, vol. 2, p. 277; (b) Rao, H. S. P.; Rafi, S.;
Padmavathy, K. Tetrahedron 2008, 64, 8037.
8. (a) Chun, Y. S.; Lee, K. K.; Ko, Y. O.; Shin, H.; Lee, S.-G. Chem.
Commun. 2008, 5098; (b) Chun, Y. S.; Ryu, K. Y.; Ko, Y. O.; Hong, J.
Y.; Hong, J.; Shin, H.; Lee, S.-G. J. Org. Chem. 2009, 74, 7556; (c) Ko,
Y. O.; Chun, Y. S.; Kim, Y.; Kim, S. J.; Shin, H.; Lee, S.-G.
Tetrahedron Lett. 2010, 51, 6893; (d) Chun, Y. S.; Ryu, K. Y.; Kim, J.
H.; Shin, H.; Lee, S.-G. Org. Biomol. Chem. 2011, 1317; (e) Chun, Y.
S.; Kim, J. H.; Choi, S. Y.; Ko, Y. O.; Lee, S.-G. Org. Lett. 2012, 14,
6358; (f) Zhao, M.-N.; Liang, H.; Ren, Z.-H.; Guan, Z.-H. Adv. Synth.
Catal. 2013, 355, 221; (g) He, Y.; Zhang, X. Y.; Fan, X.S. Asian J. Org.
Chem. 2014, 3, 1284; (h) Rao, H. S. P.; Desai, A. Synlett 2015, 26, 1059;
(i) Meng, T. J.; Liu, L. T.; Jia, H. Y.; Ren, L. F.; Feng, C. L.; Wang, X.
J.; Zhao, W. X. Appl. Organometal. Chem. 2016, 30, 47.
Scheme 2. Proposed mechanism of the reaction of 3-formylchromone
9.
Chun, Y. S.; Lee, J. H.; Kim, J. H.; Ko, Y. O.; Lee, S.-G. Org. Lett.
2011, 13, 6390.
10. Xuan, Z.; Rathwell, K.; Lee, S.-G. Asian J. Org. Chem. 2014, 3, 1108.
11.
(a) Terzidis, M.; Stephanidou, J.; Tsoleridis, C.; Terzis, A.;
Raptopoulou, C.; Psycharis, V. Tetrahedron 2010, 66, 947; (b) Sanchez,
L. M.; Sathicq, A. G.; Jios, J. L.; Baronetti, G. T.; Thomas, H.o J.;
Romanelli, G. P. Tetrahedron Lett. 2011, 52, 4412; (c) Poudel, T. N.;
Lee, Y. R.; Kim, S. H. Green. Chem. 2015, 17, 4579; (d) Paul, S.; Lee,
Y. R. Green. Chem. 2016, 18, 1488; (e) Cai, H. G.; Xia, L.K.; Lee, Y.
R. Chem. Commun. 2016, 52, 7661.
12. (a) Chen, Z. W.; Zhu, Q.; Su, W. K. Tetrahedron Lett. 2011, 52, 2601; (b)
Chen, Z. W.; Yang, X. F.; Su, W. K. Tetrahedron Lett. 2015, 56, 2476;
(c) Chen, Z. W.; Hu, L. L.; Peng, F. Synlett 2016, 27, 1888.
Scheme 3. Proposed mechanism of the reaction of 3-cyanochromone
In summary, we have described a novel divergent one-pot
method for the synthesis of polysubstituted pyridine derivatives
from easily accessible starting materials. This tandem reaction
proceeds through the regio- and chemoselective Knoevenagel-
type reaction between the Blaise reaction intermediates and 3-
formylchromones, followed by an intramolecular cyclization to
afford target products. Furthermore, We have extended the
applications of the present method using 3-cyanochromones as
substrates to introduce amino group at the pyridine core in a
feasible pathway.
13. (a) Dekker, J.; Budzelaar, P. H. M.; Boersma, J.; Van der Kerk, G. J. M.;
Spek, A. Organometallics 1984, 3, 1403; (b) Dewar, M. J. S.; Merz, Jr.,
K. M. J. Am. Chem. Soc. 1987, 109, 6553.
14. (a) Colby, D. A.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008,
130, 3645; (b) Nakamura, I.; Zhang, D.; Terada, M. J. Am. Chem. Soc.
2010, 132, 7884.
15. Typical procedure for the synthesis of polysubstituted pyridine derivative:
To a stirred suspension of commercial zinc dust (2.0 mmol) in
anhydrous THF (3.0 mL) was added a solution of MeSO3H in THF (1.0
M, 0.2 mL) at 80°C (oil bath). After stirring for 10 min, benzonitrile 1
(1.0 mmol) and ethyl bromoacetate 2 (1.5 mmol) was added over 1 h,
and then the reaction mixture was further stirred at reflux for 1 h. After
confirmed conversion of benzonitrile 1 (>95%) to the Blaise reaction
intermediate A by gas chromatography, the reaction mixture was cooled
to room temperature, and then 3-formylchromone 3 (1.5 mmol) was
added. Upon completion of the reaction, aqueous NH4Cl (10 mL) was
added and the excess zinc was filtered. The filtrate was concentrated and
water (5 mL) was added to the residue. The solution was extracted with
EtOAc (3 x 10 mL). The organic phases were combined, dried with
anhydrous Na2SO4 and then concentrated. The residue was purified by
column chromatography (EtOAc/hexane, 1:10 v/v) to afford product 5a.
Yield: (243 mg, 70%); Characteristic: pale yellow powder; Mp 89-91oC
(Lit.[11b]: 80-90oC). 1H NMR (400 MHz, CDCl3) δ 11.78 (s, 1H), 9.03 (d,
J = 2.0 Hz, 1H), 8.40 (d, J = 2.0 Hz, 1H), 7.65-7.53 (m, 4H), 7.51-7.41
(m, 3H), 7.11 (d, J = 8.0 Hz, 1H), 6.94 (t, J = 7.6 Hz, 1H), 4.20 (q, J =
7.2 Hz, 2H), 1.09 (t, J = 7.2 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ
197.72, 166.95, 163.15, 160.95, 150.48, 139.08, 138.20, 136.89, 132.65,
131.28, 129.22, 128.63, 128.06, 127.12, 119.03, 118.92, 118.69, 61.85,
13.74. MS (ESI): m/z = 348 [M+H]+.
Acknowledgments
We are grateful for the National Natural Science Foundation of
China (Nos. 21276237 and 21676253 ) for financial support.
Cooperation from the colleagues analytical research and
development is highly appreciated.
References and notes
1. (a) O’Hagan, D. Nat. Prod. Rep. 1997, 14, 637; (b) Li, A. H.; Moro, S.;
Forsyth, N.; Melman,N.; Ji, X.-D.; Jacobsen, K. A. J. Med. Chem. 1999,
42, 706; (c) Lanza, P. L.; Rack, M. F.; Li, Z.; Krajewski, S. A.; Blank,
M. A. Aliment. Pharmacol. Ther. 2000, 14, 1663; (d) Farhanullah;
Agarwal, N.; Goel, A.; Ram, V. J. J. Org. Chem. 2003, 68, 2983; (e)
Carey, J. S.; Laffan, D.; Thomson, C.; Williams, M. T. Org. Biomol.
Chem. 2006, 4, 2337; (f) Roughley, S. D.; Jordan, A. M. J. Med. Chem.