3144
A. Dziełak et al. / Tetrahedron Letters 52 (2011) 3141–3145
R1
O OH
H2N
P
N
COOH
O OH
P
H
H
N
H
N
COOH
a, b
R2
+
CH2O
+
R1
Cbz
P1'
R2
1
2
15, R = H,
R
R
= i-Bu
= Bzl
(L-Leu)
1
2
2
L-Leu
L-Phe
D-Phe
L-Tyr
Gly(N-Bzl)
16, R = H,
(L-Phe)
1
17, R = Me, R = Bzl
[L-Phe(N-Me)]
(D-Phe)
1
2
2
18, R = H,
R
= Bzl
1
19, R = Me, R = Bzl
[D-Phe(N-Me)]
1
2
2
20, R = H,
R
= p-HO-Bzl (L-Tyr)
[Gly(N-Bzl)]
1
21, R = Bzl, R = H
Scheme 5. The synthesis of the designed compounds.15 Reagents and conditions: (a) amino acid (2 equiv), CH2O (36–38% aqueous solution, 2 equiv for 15, 16, 18 and 20 or
10 equiv for 17, 19 and 21), H2O/AcOH/HClconcd (1:1:0.05, v/v), reflux, (1 h for 15, 16, 18 and 20 or 5 h for 17, 19 and 21); (b) HBr (33% solution in AcOH), room temperature,
2 h, then preparative HPLC.
R.; Cuniasse, P.; Yiotakis, A.; Dive, V.; Rio, M.-C.; Basset, P.; Moras, D. J. Mol. Biol.
2001, 307, 577–686; Selkti, M.; Tomas, A.; Gaucher, J.-F.; Prangé, T.; Fournié-
Zaluski, M.-C.; Chen, H.; Roques, B.-P. Acta Crystallogr., Sect. D 2003, 59, 1200–
1205.
Table 1
Inhibition of the mammalian (porcine kidney) leucine (LAP) and alanyl aminopep-
tidases (APN) by extended TS phosphinic pseudodipeptides (for experimental details
of the assays and LAP preparation see Refs. 3 and 20).
3. Grembecka, J.; Mucha, A.; Cierpicki, T.; Kafarski, P. J. Med. Chem. 2003, 46,
2641–2655.
31P NMR
(D2O, ppm, 121.5 MHz)
Ki (lM)
4. Skinner-Adams, T. S.; Lowther, J.; Teuscher, F.; Stack, C. M.; Grembecka, J.;
Compound
Mucha, A.; Kafarski, P.; Trenholme, K. R.; Dalton, J. P.; Gardiner, D. L. J. Med.
Chem. 2007, 50, 6024–6031.
LAP
APN
5. Mucha, A.; Grembecka, J.; Cierpicki, T.; Kafarski, P. Eur. J. Org. Chem. 2003, 24,
4797–4803.
6. Baylis, E. K.; Campbell, C. D.; Dingwall, J. G. J. Chem. Soc., Perkin Trans. 1 1984,
2845–2853.
15
16
17
18
19
20
40.46 and 39.94 (1:1)a
21.54 and 21.45 (1:0.9)
21.06 and 20.93 (1:1.1)
40.38 and 39.96 (1:1)a
40.39 and 40.10 (1:0.9)a
21.05 and 20.95 (1:1)
226
2.89
9.33
19.2
9.39
17.9
91.1
41.8
7.66
17.5
33.2
7. Stetter, H.; Kuhlmann, H. Synthesis 1979, 29–30.
ˇ
8. Yiotakis, A.; Vassiliou, S.; Jirácek, J.; Dive, V. J. Org. Chem. 1996, 61, 6601–6605;
4.59 (initial)b
Yiotakis, A.; Georgiadis, D.; Matziari, M.; Makaritis, A.; Dive, V. Curr. Org. Chem.
2004, 8, 1135–1158. and references cited therein.
1.06 (steady state)
21
21.00
52.4
3.11 (initial)b
9. For selected examples, see: Matziari, M.; Georgiadis, D.; Dive, V.; Yiotakis, A.
Org. Lett. 2001, 3, 659–662; Makaritis, A.; Georgiadis, D.; Dive, V.; Yiotakis, A.
Chem. Eur. J. 2003, 9, 2079–2094; Matziari, M.; Beau, F.; Cuniasse, P.; Dive, V.;
Yiotakis, A. J. Med. Chem. 2004, 47, 325–336; Matziari, M.; Yiotakis, A. Org. Lett.
2005, 7, 4049–4052; Vassiliou, S.; Xeilari, M.; Yiotakis, A.; Grembecka, J.;
Pawełczak, M.; Kafarski, P.; Mucha, A. Bioorg. Med. Chem. 2007, 15, 3187–3200.
2.90 (steady state)
a
NaOD was added to achieve solubility.
Slow binding mechanism of type A.
b
_
10. Kiss, T.; Farkas, E.; Jezowska-Bojczuk, M.; Kozłowski, H.; Kowalik, E. J. Chem.
Soc., Dalton Trans. 1990, 377–379.
aminopeptidases. The most interesting aspects of the structure–
activity relationship concerned their low micromolar affinity to-
wards monozinc APN with significantly poorer affinity to LAP.
Increasing the scope of this synthetic method to a wider variety
of amine substrates could be profitable in other fields of study, for
example in the construction of novel metal complexing agents or
multifunctional molecular receptors. Disappointingly, the applica-
tion of primary amino acids led to complicated mixtures of
products under standard conditions. Their separation and identifi-
cation provided confirmation of the occurrence of side-reactions.
These involve random combination of phosphine/imine redox pro-
cesses, leading to phosphinate P–H oxidation and N-methylation,
with N-deprotection of the phosphorus substrate and different
variants of polycondensation. Introduction of easily accessible
N-benzyl amino acids might be suggested as a suitable protecting
group strategy (since it may be removed simultaneously with
Cbz) in an alternative synthetic pathway leading to the target
compounds.
11. Moedritzer, K.; Irani, R. R. J. Org. Chem. 1966, 31, 1603–1607.
12. Aminophosphonic and Aminophosphinic Acids. Chemistry and Biological Activity;
Kukhar, V. P., Hudson, H. R., Eds.; John Wiley & Sons: Chichester, 2000.
13. Mucha, A.; Kafarski, P.; Plenat, F.; Cristau, H.-J. Phosphorus, Sulfur, Silicon 1995,
105, 187–193.
14. Hirschmann, R.; Yager, K. M.; Taylor, C. M.; Witherington, J.; Sprengeler, P. A.;
Phillips, B. W.; Moore, W.; Smith, A. B., III J. Am. Chem. Soc. 1997, 119, 8177–
8190.
15. A representative phosphinomethylation procedure of a primary amino acid with
1-(N-benzyloxycarbonylamino)alkane-H-phosphinic acid and formaldehyde,
and the separation of products.
A phosphinic acid (3.0 mmol) and an amino acid (9.0 mmol) were dissolved
in a hot H2O/AcOH/HClconcd mixture (10:10:0.5 mL). Formaldehyde (36–38%
aqueous solution, 6.0 mmol, 0.5 mL) was added in two portions to the stirred
solution. Following addition the mixture was refluxed for 1 h and then cooled
to room temperature. The solvents were evaporated to ca. 20–25% of the
starting volume. The solid was precipitated by addition of H2O (50 mL),
filtered and dried in the air. The Cbz protection was removed by the action of
HBr (33% solution in AcOH, 10 mL per 1 g) for 2 h at room temperature. The
acids were removed under reduced pressure and the residue was triturated
with Et2O. The resulting solid was filtered, dissolved in a small quantity of
H2O/MeCN and subjected to preparative HPLC (Varian ProStar apparatus with
ProStar 325 UV/vis detector using a Dynamax 250 ꢁ 21.4 Microsorb 300-10
C18 column).
2-(S)-N-{[(1’-(R,S)-amino-3’-phenylpropyl)(hydroxy)phosphinyl]methyl}amino-3-
(p-hydroxyphenyl)-propionic acid (20). 1H NMR (ppm, D2O, 300.1 MHz): 7.11
(m, 5H, C6H5), 6.91 and 6.64 (2 ꢁ d, J = 8.0 Hz, 2H and 2H, C6H4), 4.09 (m, 1H,
NCHCO), 3.14 (m, 1H, CHP), 3.02 (m, 4H, PCH2 and p-HO–C6H4CH2), 2.63 and
2.50 (2 ꢁ m, 1H and 1H, CH2C6H5), 1.95 and 1.80 (2 ꢁ m, 1H and 1H,
CHCH2CH2). 31P NMR (ppm, D2O, 121.5 MHz): 21.05 and 20.95 (1:1). 13C NMR
(ppm, D2O + NaOD, 151.0 MHz): 181.82 and 181.91 (C@O), 164.52 (C4, C6H4),
142.48 (C1, C6H5), 130.41 and 130.39 (C2, C6H4), 128.71 (C2, C6H5), 128.66
(C3, C6H5), 126.08 (C4, C6H5), 124.01 (C1, C6H4), 118.61 (C3, C6H4), 67.91 and
67.82 (2 ꢁ d, JP = 9.1 Hz, NCHCO), 49.12 and 49.02 (2 ꢁ d, JP = 99.7 Hz and
98.2 Hz, CHP), 45.17 and 45.07 (2 ꢁ d, JP = 95.1 Hz and 99.7 Hz, PCH2), 38.22
and 38.14 (p-HO–C6H4CH2), 32.21 (d, JP = 12.1 Hz, CH2C6H5), 31.98 (d,
JP = 6.0 Hz, CHCH2CH2). HRMS (ESI) m/z: [M+H]+ calcd for C19H26N2O5P:
393.1579, observed: 393.1539. HPLC purification (v/v, H2O/MeCN, both
containing 0.1% of trifluoroacetic acid): gradient 85:15 (0 min)?75:25
(35 min), tr = 27.2 min.
Acknowledgement
This work was supported by a grant from the Polish Ministry of
Science and Higher Education (N N302 159937).
References and notes
1. Matsui, M.; Fowler, J. H.; Walling, L. L. Biol. Chem. 2006, 387, 1535–1544; Taylor,
A. FASEB J. 1993, 7, 290–298; Lowther, W. T.; Matthews, B. W. Chem. Rev. 2002,
102, 4581–4607; Bauvois, B.; Dauzonne, D. Med. Res. Rev. 2006, 26, 88–130;
Luan, Y.; Xu, W. Curr. Med. Chem. 2007, 14, 639–647; Zhang, X.; Xu, W. Curr.
Med. Chem. 2008, 15, 2850–2865.
2. Grams, F.; Dive, V.; Yiotakis, A.; Yiallouros, I.; Vassiliou, S.; Zwilling, R.; Bode,
W.; Stöcker, W. Nat. Struct. Biol. 1996, 3, 671–675; Gall, A. L.; Ruff, M.; Kannan,