J. D. Thomas, T. R. Burke Jr. / Tetrahedron Letters 52 (2011) 4316–4319
4319
tives represent attractive drug cargos for validating the synthetic
Supplementary data
strategy outlined in Scheme 3, because they contain N-alkylated
tripeptide sequences that are prone to acid-catalyzed degrada-
tion.26 Disulfide exchange between 8 and 10 and evaporation of
solvent gave a crude reaction mixture, which was subjected to
Mtt removal (1% TFA in CH2Cl2) to provide 11 in modest yield
(Scheme 3). Importantly, no degradation of 10 was observed
during under these conditions. Coupling of 11 to 9 (HOAt, diisopro-
pylcarbodiimide and diisopropylethylamine in DMF) gave the fully
elaborated construct 12.
Supplementary data (experimental procedures and spectro-
scopic data for all new compounds) associated with this article
References and notes
1. Hofer, T.; Thomas, J. D.; Burke, T. R., Jr.; Rader, C. Proc. Natl. Acad. Sci. U.S.A. 2008,
105, 12451.
Linker 8 was also used to prepare clickable biotin-containing
derivatives 15 and 16 (Scheme 4). Biotin-(STrt)cystamine 13 was
converted in three steps to disulfide-containing amine 14 (Scheme
4). HATU-mediated coupling with 9 yielded biotin-containing
tetrazine 15, while reaction of 14 with OSu-activated azido acetic
acid yielded the corresponding azide 16. Since classical click
reactions3 require a reducing agent in order to maintain copper
in the +1 oxidation state, disulfides such as 16 are potentially
better suited for Cu-free reactions that utilize highly strained
cyclooctynes.4
In conclusion, we have shown that the PEG-based pyridyl
disulfide amine linker 1 is a useful reagent for preparing water-sol-
uble disulfide-linked cargos. It may be particularly valuable in
expanding the field of Cu-free click-based bioconjugations, where
applications have traditionally been related to imaging agents.
Reagents such as 1 may extend the use of Cu-free click reagents
to include reductively labile antibody, polymer, or nanoparticle-
based drug conjugates.
2. Hofer, T.; Skeffington, L. R.; Chapman, C. M.; Rader, C. Biochemistry 2009, 48,
12047.
3. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 2004.
4. Jewett, J. C.; Bertozzi, C. R. Chem. Soc. Rev. 2010, 39, 1272.
5. Saito, G.; Swanson, J. A.; Lee, K.-D. Adv. Drug Delivery Rev. 2003, 55, 199.
6. Ojima, I. Acc. Chem. Res. 2008, 41, 108.
7. Carter, P. J.; Senter, P. D. Cancer J. 2008, 14, 154.
8. Low, P. S.; Kularatne, S. A. Curr. Opin. Chem. Biol. 2009, 13, 256.
9. van der Vlies, A. J.; O’Neil, C. P.; Hasegawa, U.; Hammond, N.; Hubbell, J. A.
Bioconjugate Chem. 2010, 21, 653.
10. Leamon, C. P.; Low, P. S. J. Biol. Chem. 1992, 267, 24966.
11. Zhu, L.; Mahato, R. I. Bioconjugate Chem. 2010, 21, 2119.
12. Meister, A.; Anderson, M. E. Annu. Rev. Biochem. 1983, 52, 711.
13. Howie, A. F.; Forrester, L. M.; Glancey, M. J.; Schlager, J. J.; Powis, G.; Beckett, G.
J.; Hayes, J. D.; Wolf, C. R. Carcinogenesis 1990, 11, 451.
14. Balendiran, G. K.; Dabur, R.; Fraser, D. Cell Biochem. Funct. 2004, 22, 343.
15. Zugates, G. T.; Anderson, D. G.; Little, S. R.; Lawhorn, I. E. B.; Langer, R. J. Am.
Chem. Soc. 2006, 128, 12726.
16. Breitenkamp, K.; Sill, Kevin, N.; Skaff, H. In Patent Cooperation Treaty (PCT);
Organization, Publication WO 2007/127473 A2, November 8, 2007.
17. Pilkington-Miksa, M. A.; Sarkar, S.; Writer, M. J.; Barker, S. E.; Shamlou, P. A.;
Hart, S. L.; Hailes, H. C.; Tabor, A. B. Eur. J. Org. Chem. 2008, 2900.
18. French, A. C.; Thompson, A. L.; Davis, B. G. Angew. Chem. Int. Ed. 2009, 48, 1248.
19. Field, L.; Parsons, T. F.; Pearson, D. E. J. Org. Chem. 1966, 31, 3550.
20. Wuts, P. G. M.; Greene, T. W. Greene’s Protective Groups in Organic Synthesis, 4th
ed.; Wiley-Interscience: Hoboken, NJ 07030-5774, 2007.
Acknowledgments
21. Lapeyre, M.; Leprince, J. M. M.; Oulyadi, H.; Renard, P. Y.; Romieu, A.; Turcatti,
G.; Vaudry, H. Chem. Eur. J. 2006, 12, 3655.
22. de Arruda, M.; Cocchiaro, C. A.; Nelson, C. M.; Grinnell, C. M.; Janssen, B.; Haupt,
A.; Barlozzari, T. Cancer Res. 1995, 55, 3085.
23. Pipkorn, R.; Waldeck, W.; Didinger, B.; Koch, M.; Mueller, G.; Wiessler, M.;
Braun, K. J. Pept. Sci. 2009, 15, 235.
24. Blackman, M. L.; Royzen, M.; Fox, J. M. J. Am. Chem. Soc. 2008, 130, 13518.
25. Thomas Joshua, D.; Rader, C.; Burke, T. R., Jr. Unpublished results 2011.
26. Anteunis, M. J. O.; van der Auwera, C. Int. J. Pept. Protein Res. 1988, 31, 301.
This work was supported in part by the Intramural Research
Program of the NIH, Center for Cancer Research, NCI-Frederick
and the National Cancer Institute, National Institutes of Health.
The content of this publication does not necessarily reflect the
views or policies of the Department of Health and Human Services,
nor does mention of trade names, commercial products, or organi-
zations imply endorsement by the US Government.