ACS Medicinal Chemistry Letters
LETTER
incubation of 2 and 19; the conversion was about 30% and 11%
for 2 and 95% and 20% for 19, in rat and human hepatocytes,
respectively (Figure 1).
(3) Youn, B. S.; Mantel, C.; Broxmeyer, H. E. Chemokines, Che-
mokine receptors and hematopoiesis. Immunol. Rev. 2000, 177, 150–
174.
(4) Murphy, P. M.; Baggiolini, M.; Charo, I. F.; Hebert, C. A.; Horuk,
R.; Matsushima, K.; Miller, L. H.; Oppenheim, J. J.; Power, C. A.
International Union of Pharmacology XXII. Nomenclature for chemo-
kine receptors. Pharmacol. Rev. 2000, 52, 145–176.
These observations clearly confirmed the interconversion of 2
into 21 and that the hydrolysis of acylsulfonamido embedded in
19 occurring in hepatocytes is followed by a fast acylation with
inversion of the stereogenic center, leading to 21. In contrast to
the reactive character of aliphatic triflates, no traces of phenol
derivatives were found. Moreover, no traces of 22 were observed,
thus confirming the hypothesis that a reactive ester is a key
intermediate of the enzymatic chiral inversion process. Finally,
the formation of glucuronide metabolites of 2, 19, 21, and 22 was
not observed (Supporting Information).
Overall, in the investigated system, 19 demonstrated a re-
markable in vitro metabolic stability because the formation of its
corresponding carboxylic acids 2 and 21 occurred only in traces.
Similar results were obtained using mouse and dog hepatocytes
(Supporting Information). Then, in virtue of its peculiar in vitro
metabolic profile, 19 was selected for further in vivo investigation.
Pharmacokinetic studies in rat showed a high elimination half-
life (approximately 19 hours) and a clearance of 0.1 mL/(min kg)
after intravenous administration, coherent with the marked
metabolic stability and the strong protein binding.21
(5) Shadidi, K. R. New Drug Targets in Rheumatoid Arthritis:
Focuson Chemokines. BioDrugs 2004, 18, 181–187.
(6) Owen, C. Chemokine receptors in airway disease: which recep-
tors to target?. Pulm. Pharmacol. Ther. 2001, 14, 193–202.
(7) Xia, M.-Q.; Hyman, B. T. Chemokines/chemokine receptors in
the central nervous system and Alzheimer’s disease. J. Neurovirol. 1999,
5, 32–41.
(8) Scheibenbogen, C.; Mohler, T.; Haefele, J.; Hunstein, W.;
Keilholz, U. Serum interleukin-8 (IL-8) is elevated in patients with
metastatic melanoma and correlates with tumour load. Melanoma Res.
1995, 5, 179–181.
(9) Kulke, R.; Bornscheuer, E.; Schluter, C.; Bartels, J.; Rowert, J.;
Sticherling, M.; Christophers, E. The CXC Receptor 2 is overexpressed
in psoriatic epidermis. J. Invest. Dermatol. 1998, 110, 90–94.
(10) White, J. R.; Lee, J. M.; Dede, K.; Imburgia, C. S.; Jurewicz, A. J.;
Chan, G.; Fornwald, J. A.; Dhanak, D.; Christmann, L. T.; Darcy, M. G.;
Widdowson, K. L.; Foley, J. J.; Schmidt, D. B.; Sarau, H. M. Identificaton
of a potent, selective nonpeptide CXCR2 antagonist that inhibits
Interleukin-8-induced neutrophil migration. J. Biol. Chem. 1998, 273,
10095–10098.
(11) Widdowson, K. L.; Elliott, J. D.; Veber, D. F.; Nie, H.; Rutledge,
M. C.; McCleland, B. W.; Xiang, J. N.; Jurewicz, A. J.; Hertzberg, R. P.;
Foley, J. J.; Griswold, D. E.; Martin, L.; Lee, J. M.; White, J. R.; Sarau,
H. M. Evaluation of potent and selective small-molecule antagonists
of the CXCR2 chemokine receptor. J. Med. Chem. 2004, 47, 1319–
1321.
(12) Bertini, R.; Allegretti, M.; Bizzarri, C.; Moriconi, A.; Locati, M.;
Zampella, G.; Cervellera, M. N.; Di Cioccio, V.; Cesta, M. C.; Galliera,
E.; Martinez, F. O.; Di Bitondo, R.; Troiani, G.; Sabbatini, V.; D’
Anniballe, G.; Anacardio, R.; Cutrin, J. C.; Cavalieri, B.; Mainiero, F.;
Strippoli, R.; Villa, P.; Di Girolamo, M.; Martin, F.; Gentile, M.; Santoni,
A.; Corda, D.; Poli, G.; Mantovani, A.; Ghezzi, P.; Colotta, F. Non-
competitive allosteric inhibitors of the inflammatory chemokine recep-
tors CXCR1 and CXCR2: prevention of reperfusion injury. Proc. Natl.
Acad. Sci. 2004, 101, 11791–11796.
(13) Moriconi, A.; Cesta, M. C.; Cervellera, M. N.; Aramini, A.;
Coniglio, S.; Colagioia, S.; Beccari, A. R.; Bizzarri, C.; Cavicchia, M. R.;
Locati, M.; Galliera, E.; Di Benedetto, P.; Vigilante, P.; Bertini, R.;
Allegretti, M. Design of noncompetitive interleukin-8 inhibitors acting
on CXCR1 and CXCR2. J. Med. Chem. 2007, 50, 3984–4002.
(14) Kieser, K. J.; Dong, W. K.; Carlson, K. E.; Katzenellenbogen,
B. S.; Katzenellenbogen, J. A. Characterization of the pharmacophore
properties of novel selective estrogen receptor downregulators
(SERDs). J. Med. Chem. 2010, 53, 3320–3329.
Additionally, 19 had excellent oral bioavailability in rats (F =
100%, Supporting Information), and it was mostly excreted un-
changed (data not shown).
In summary, this paper reports the drug profiling approach
that guided the characterization of the aryltriflate moiety incor-
porated in the potent CXCR1/CXCR2 clinical candidate 19.
Interestingly, the results herein reported demonstrate for the
first time that, in clear contrast with the strong reactivity of
aliphatic triflates, the aryltriflate group, even if rarely used in
medicinal chemistry, is chemically and biologically stable and
represents a valid choice as EWG substituent of the phenyl ring in
lead optimization studies.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental details for the
b
synthesis and characterization of reported compounds. This
material is available free of charge via the Internet at http://
pubs.acs.org.
’ AUTHOR INFORMATION
Corresponding Author
*Phone: +39-0862-338424. Fax: +39-0862-338219. E-mail: ales-
(15) Oh-e, T.; Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-
coupling reaction of organoboron compounds with organic triflates.
J. Org. Chem. 1993, 58, 2201–2208.
(16) Wolfe, P. J.; Buchwald, S. L. Palladium-catalyzed amination of
aryl triflates. J. Org. Chem. 1997, 62, 1264–1267.
’ ABBREVIATIONS
CXCR1, type A CXCL8 receptor; CXCR2, type B CXCL8 receptor;
CYP, cytochrome; EWG, electron withdrawing group; GPCRs,
G-protein coupled receptors; NSAIDs, nonsteroidal antiinflamma-
tory drugs; PMN, neutrophil polymorphonucleate leukocytes;
SAR, structureꢀactivity relationship.
integrity.
(18) Sanins, S. M.; Adams, W. J.; Kaiser, D. G.; Halstead, G. W.;
Hosley, J.; Barnes, H.; Baillie, T. A. Mechanistic studies on the metabolic
chiral inversion of R-ibuprofen in the rat. Drug Metab. Dispos. 1991,
19, 405–410.
(19) Sanins, S. M.; Adams, W. J.; Kaiser, D. G.; Halstead, G. W.;
Baillie, T. A. Studies on the metabolism and chiral inversion of ibuprofen
in isolated rat hepatocytes. Drug Metab. Dispos. 1990, 18, 527–533.
(20) Flipo, M.; Charton, J.; Hocine, A.; Dassonneville, S.; Deprez,
B.; Deprez-Poulain, R. Hydroxamates: relationships between structure
and plasma stability. J. Med. Chem. 2009, 52, 6790–6802.
’ REFERENCES
(1) Horuk, R. Chemokine receptors. Cytokine Growth Factor Rev.
2001, 12, 313–335.
(2) Gillitzer, R.; Goebeler, M. Chemokines in cutaneous wound
healing. J. Leukocyte Biol. 2001, 69, 513–521.
772
dx.doi.org/10.1021/ml2001533 |ACS Med. Chem. Lett. 2011, 2, 768–773