The Journal of Organic Chemistry
NOTE
NMR (400 MHz, CDCl3) δ ppm 1.6ꢁ1.9,(m, 5H), 2.0ꢁ2.2 (m, 4H),
2.5 (m, 2H), 5.2 (ds, 2H), 5.8ꢁ5.9 (m, 1H), 6.7 (t, 1H); 13C NMR (400
MHz, CDCl3) δ ppm 141.5, 132.5, 118.6, 118.0, 77.7, 44.3, 33.0, 28.5,
24.7, 20.7; HRMS calcd for C10H14I (M+ ꢁ OH) 261.0141, found
261.0198.
(m), 2939 (s), 2836 (s), 1740 (s), 1640 (m), 1584 (m), 1478 (s), 1268
(s); 1H NMR (400 MHz, CDCl3) δ ppm 1.4ꢁ1.6 (m, 1H) 2.0 (m, 1H)
2.2ꢁ2.4 (m, 2H) 2.4ꢁ2.5 (m, 2H) 3.0 (d, 1H, J = 10.8 Hz), 3.7 (s, 3H),
3.9 (s, 3H), 5.0 (m, 2H), 5.7 (m, 1H), 6.6 (d, 1H, J = 8.2 Hz), 6.8ꢁ6.9 (d,
1H, J = 8.2 Hz), 7.0 (t, 1H, J = 8.2 Hz); 13C NMR (400 MHz, CDCl3)
δ ppm u: 218.4, 152.7, 146.9, 132.7, 116.6, 38.2, 38.0, 27.3 d: 135.7,
123.7, 122.8, 111.8, 59.8, 58.4, 55.7, 44.0; HRMS calcd for C16H20O3
(M+) 260.1412, found 260.1401.
(1S,2S)- 2-(3-Phenoxymethoxypropyl)- 3-(2-propenyl)cyclo-
hexanone (4a): To a 100 mL round-bottom flask was charged 3a
(1.07 g, 3.77 mmol), followed by 18-crown-6 (996 mg, 3.77 mmol) and
50 mL of THF. The reaction was sparged with N2 for 10 min, and
KH(P) (452 mg 5.65 mmol) was added portionwise. The reaction was
heated to reflux for 1 h and then quenched with saturated aqueous
ammonium chloride. The organic layer was partitioned between Et2O
and water. The organic layer was dried (anhydrous Na2SO4) and con-
centrated. The residue was chromatographed giving 4a (749 mg, 70%
yield) as a yellow oil: TLC Rf = 0.20 (DCM/MTBE/PE, 10:20:70);
[α]D +18 (c = 0.02, CH2Cl2, 20 °C) IR (neat, cmꢁ1) 3029 (m), 2931
(s), 1709 (m), 1639 (m), 1495 (s), 1453 (s), 1360 (s); major
(1S,2S)-2-Methyl-3-(2-propenyl)cycloheptanone (4f): yel-
low oil (52% yield) as a mixture of diastereomers; TLC Rf = 0.30
(MTBE/PE, 5:95); [α]20 ꢁ45.0 (c = 0.03; CH2Cl2, 20 °C); IR
D
(neat, cmꢁ1) 3074 (m), 2927 (s), 2862 (s), 1700 (s), 1640 (m), 1451
(m), 1374 (m), 1H NMR (400 MHz, CDCl3) δ ppm 1.0ꢁ1.1 (d, 2H,
J=8.2 Hz) 1.1ꢁ1.2 (d, 1H, J=8.2 Hz) 1.5ꢁ2.0 (m, 8H) 2.1 (m, 1H)
2.3ꢁ2.4 (m, 2H), 2.6 (m, 1H), 2.8ꢁ2.9 (m, 1H), 5.0 (m, 2H), 5.0ꢁ5.1
(m, 2H), 5.6ꢁ5.8 (m, 1H); major 13C NMR (400 MHz, CDCl3)
δ ppm u: 215.7, 116.2, 43.3, 34.5, 32.3, 25.9, 24.2 d: 137.2, 49.3, 40.1,
12.9; HRMS calcd for C11H19O (M + H) 167.1436, found 167.1435.
1
diastereomer: H NMR (400 MHz, CDCl3) δ ppm 1.49 - 2.45 (m,
14H) 3.5 (t, 2 H) 4.5 (s, 2 H) 5.1 (m, 2 H) 5.8 (m, 1 H) 7.21 - 7.4 (m,
5H); 13C NMR (400 MHz, CDCl3) δ ppm u: 213.3, 138.6, 117.0, 72.7,
70.3, 37.8, 28.7, 27.3, 26.2, 24.7, 24.1, 22.0 d: 135.7, 128.3, 127.5, 54.6,
41.9; HRMS calcd for C19H27O2 (M + H) 287.2011, found 287.2002.
(1R,2R)-2-Methyl-3-(2-propenyl)cyclohexanone (4b). To a
500 mL round-bottom flask were charged toluene (140 mL), 18-crown-
6 (6.48 g, 24.5 mmol), and potassium tert-butoxide (5.49 g, 49 mmol).
Ketone 3b (5.33 g, 35 mmol) was charged in 30 mL of toluene. The
reaction was heated to 84 °C for 1 h and was then quenched with
saturated aqueous NH4Cl. The toluene/PE solution was then diluted
with more PE and placed directly on a column for purification by silica
gel chromatography to afford ketone 4b (2.162 g, 64% yield, mixture of
trans/cis diastereomers) as a light yellow oil: [α]20D = +10.0 (c = 1.00,
CH2Cl2, 2:1 mixture of trans:cis diastereomers); TLC Rf (MTBE/PE,
1:4) = 0.67; 1H NMR δ 5.85ꢁ5.73 (m, 1H, trans diastereomer),
5.75ꢁ5.63 (m, 1H, cis diastereomer), 5.11ꢁ5.03 (m, 2H, trans dia-
stereomer), 5.03ꢁ4.98 (m, 2H, cis diastereomer), 2.66ꢁ2.00 (m, 6H),
1.93ꢁ1.41 (m, 4H), 1.05 (d, J = 12.8 Hz, 3H, trans diastereomer), 1.02
(d, J = 12.8 Hz, 3H, cis diastereomer); 13C NMR (trans diastereomer)
δ u: 213.4, 117.1, 41.5, 38.2, 30.3, 25.7; d: 135.5, 49.4, 45.2, 11.9; (cis
diastereomer) δ u: 214.5, 116.3, 39.8, 33.7, 26.7, 23.7; d: 136.5, 48.7,
41.9, 11.5; IR: 1711, 1640, 1447, 1221, 999, 914 cmꢁ1; HRMS calcd for
C10H17O (M + H) 153.1279, obsd 153.1283.
’ ASSOCIATED CONTENT
Supporting Information. 1H and 13C NMR spectra for
S
b
all new compounds. This material is available free of charge via
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: taberdf@udel.edu.
’ ACKNOWLEDGMENT
We thank Dr. John Dykins for mass spectrometric measure-
ments, supported by the NSF (0541775), Dr. Shi Bai for NMR
assistance (NSF CRIF:MU, CHE 0840401), and the NIH
(GM42056) for financial support. We thank the Schaus group
for sharing their results prior to publication.
’ REFERENCES
(1) (a) Catalytic enantioselective conjugate allylation is effective
with doubly activated cycloalkenones: Shizuka, M.; Snapper, M. L.
Angew. Chem., Int. Ed. 2008, 47, 5049. (b) Despite excellent progress
with catalytic enantioselective conjugate addition, there has been only
one report of addition to an α-alkyl or α-aryl cyclic enone: Vuagnoux-
d’Augustin, M.; Alexakis, A. Chem.—Eur. J. 2007, 13, 9647. For other
leading references, see: (c) Alexakis, A.; Li, K. Angew. Chem., Int. Ed.
2006, 45, 7600. (d) Wencel, J.; Rix, D.; Jennequin, T.; Labat, S.; Crꢀevisy,
C.; Mauduit, M. Tetrahedron: Asymmetry 2008, 19, 1804. (e) Malmgren,
M.; Granander, J.; Amedjkouh, M. Tetrahedron: Asymmetry 2008,
19, 1934. (f) Feringa, B. L.; Harutyunyan, S. R.; den Hartog, T.; Geurts,
K.; Minnaard, A. J. Chem. Rev. 2008, 108, 2824. (g) Riguet, E.
Tetrahedron Lett. 2009, 50, 4283. (h) Alexakis, A.; Palais, L. Tetrahedron:
Asymm. 2009, 20, 2866.
(2) Several methods have been developed for the enantioselective
1,2-allylation of ketones: (a) Tietze, L. F.; Schiemann, K.; Wegner, C.
J. Am. Chem. Soc. 1995, 117, 5851. (b) Tagliavini, E.; Casolari, S.;
D’Addario, D. Org. Lett. 1999, 1, 1061. (c) Wada, R.; Oisaki, K.; Kanai,
M.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 8910. (d) Walsh, P. J.;
Kim, J. G.; Waltz, K. M.; Garcia, I. F.; Kwiatkowski, D. J. Am. Chem. Soc.
2004, 126, 12580. (e) Chong, J. M.; Wu, T. R.; Shen, L. Org. Lett. 2004,
6, 2701. (f) Yamamoto, H.; Wadamoto, M. J. Am. Chem. Soc. 2005,
127, 14556. (g) Schaus, S. E.; Lou, S.; Moquist, P. N. J. Am. Chem. Soc.
2006, 128, 12660. (h) Yamamoto, H.; Wadamoto., M. Chem. Asian
J. 2007, 2, 692. (i) Feng, X.; Zheng, K.; Qin, B.; Liu, X. J. Org. Chem.
2007, 72, 8478. (j) Ishihara, K.; Hatano, M. Synthesis 2008, 1647.
(1R,2S)-2-(2,3-Dimethoxyphenyl)-3-(2-propenyl)cyclohe-
xanone (4c): white solid (89% yield, mp = 70ꢁ75 °C); TLC Rf = 0.5
(MTBE/PE 20:80); [α]20 ꢁ64 (c = 0.2 CH2Cl2, 20 °C); IR
D
(neat, cmꢁ1) 2934 (s), 2931 (s), 1710 (s), 1584 (m), 1475 (s), 1267
1
(s), H NMR (400 MHz, CDCl3) δ ppm 1.5 (m, 2H) 1.8 (m, 2 H)
2.0ꢁ2.2 (m, 4 H) 2.4 (m, 1H) 2.6 (m, 1 H), 3.6 (d, 1H, J = 9.2 Hz), 3.7
(s, 3H), 3.9 (s, 3H), 4.9 (m, 2H), 5.6ꢁ5.8 (m, 1H), 6.6 (d, 1H, J = 8.2
Hz) 6.8 (d, 1H, J = 8.2 Hz) 7.1 (t, 1H, J = 8.2 Hz) 13C NMR (400 MHz,
CDCl3) δ ppm u: 210.0, 152.6, 147.4, 131.6, 116.8, 41.8, 39.0, 30.6, 25.1
d: 135.8, 123.7, 121.7, 111.0, 60.4, 56.8, 55.6, 43.5; HRMS calcd for
C17H23O3 (M + H) 275.1647, found 275.1659.
(1S,2S)-2-(3-Phenoxymethoxypropyl)-3-(2-propenyl)cyclo-
pentanone (4d): yellow oil (52% yield); TLC Rf = 0.35 (MTBE/PE,
20:80); [α]20D ꢁ72 (c = 0.1 CH2Cl2, 20 °C); IR (neat, cmꢁ1) 2909 (m),
2857 (s), 1735 (s), 1700 (s), 1638 (m), 1450 (m); 1H NMR (400 MHz,
CDCl3) δ ppm 1.3ꢁ2.5 (m, 13H) 3.4ꢁ3.5 (m, 2H) 4.5 (m, 2H), 2.1 (m,
1H) 5.0ꢁ5.1 (m, 2H), 5.7ꢁ5.9 (m, 1H), 7.2ꢁ7.4 (m, 5H), 13C NMR
(400 MHz, CDCl3) δ ppm u: 220.2, 138.1, 116.2, 72.4, 69.9, 38.1, 37.2,
27.3, 26.5, 21.6 d: 137.5, 127.9, 126.5, 126.0, 52.1, 41.9; HRMS calcd for
C18H25O2 (M + H) 273.1854, found 273.1850.
(1R,2S)-2-(2,3-Dimethoxyphenyl)-3-(2-propenyl)cyclopen-
tanone (4e): yellow oil (67% yield); TLC Rf = 0.67 (MTBE/PE,
20:80);); [α]20D +38 (c = 0.1 CH2Cl2, 20 °C); IR (neat, cmꢁ1) 3073
7616
dx.doi.org/10.1021/jo2013753 |J. Org. Chem. 2011, 76, 7614–7617