ACS Medicinal Chemistry Letters
Letter
(8) McBride, H. M.; Neuspiel, M.; Wasiak, S. Mitochondria: more
than just a power house. Curr. Biol. 2006, 16, R551−R560.
(9) Bras, M.; Queenan, B.; Susin, S. A. Programmed cell death via
mitochondria: different modes of dying. Biochemistry 2005, 70, 231−
239.
10 μM concentration. Idebenone itself diminished ATP levels
with or without 4-nitrobenzoate coadministration. It has been
reported that addition of decylubiquinone (2) to 4-nitro-
benzoate treated cells significantly increased respiration beyond
that of the treated control.39
(10) Orrenius, S.; Gogvadze, V.; Zhivotovsky, B. Mitochondrial
oxidative stress: implications for cell death. Annu. Rev. Pharmacol.
Toxicol. 2007, 47, 143−183.
In summary, new pyrimidinol derivatives, have been
synthesized and characterized biochemically. The results
indicate that careful optimization of the redox core and side
chain can afford multifunctional radical quenchers capable of
potently suppressing ROS and lipid peroxidation, preserving
mitochondrial membrane potential, affording cytoprotection
against induced oxidative stress, and maintaining normal ATP
levels. The greatly improved cytoprotective activities of the
present compounds capable of enhancing ATP production, in
comparison with prototype analogue 3, suggests that optimal
activity results from multiple properties of the compounds in
suppressing lipid peroxidation and ROS, in addition to
enhancing energy production, consistent with our earlier
mechanistic hypothesis.21 While the limited number of
analogues studied here does not completely define the side
chain and redox core optimal for improving antioxidant and
bioenergetic properties, it does suggest that further structural
optimization may afford compounds suitable for therapeutic
intervention in mitochondrial and neurodegenerative diseases
associated with increased levels of ROS and reduced energy
production.
(11) Graier, W. F.; Frieden, M.; Malli, R. Mitochondria and Ca2+
signaling: old guests, new functions. Eur. J. Physiol. 2007, 455, 375−
396.
(12) Turrens, J. F. Mitochondrial formation of reactive oxygen
species. J. Physiol. 2003, 552, 335−344.
(13) Murphy, M. P. How mitochondria produce reactive oxygen
species. Biochem. J. 2009, 417, 1−13.
(14) Mates, J. M.; Perez-Gomez, C.; Nunez de Castro, I. Antioxidant
enzymes and human diseases. Clin. Biochem. 1999, 32, 595−603.
(15) Fridovich, I. Fundamental aspects of reactive oxygen species, or
what’s the matter with oxygen? Ann. N.Y. Acad. Sci. 1999, 893, 13−18.
(16) Lenaz, G. Role of mitochondria in oxidative stress and ageing.
Biochim. Biophys. Acta 1998, 1366, 53−67.
(17) Ernster, L.; Dallner, G. Biochemical, physiological and medical
aspects of ubiquinone function. Biochim. Biophys. Acta 1995, 1271,
195−204.
(18) Nohl, H.; Kozlov, A. V.; Staniek, K.; Gille, L. The multiple
functions of coenzyme Q. Bioorg. Chem. 2001, 29, 1−13.
(19) Bhagavan, H. N.; Chopra, R. K. Plasma coenzyme Q10 response
to oral ingestion of coenzyme Q10 formulations. Mitochondrion 2007,
7, S78−S88.
(20) CoQ10 can be rendered water soluble by formulation. See, e.g.,
Borowy-Borowski, H.; Sikorska-Walker, M.; Walker, P. R. Water
soluble compositions of bioactive lipophilic compounds. U. S. Patent
6,632,443, October 14, 2003.
(21) Arce, P. M.; Khdour, O. M.; Goldschmidt, R.; Armstrong, J. S.;
Hecht, S. M. A strategy for suppressing redox stress within
mitochondria. ACS Med. Chem. Lett. 2011, 2, 608−613.
(22) Khdour, O. M.; Lu, J.; Hecht, S. M. An acetate prodrug of a
pyridinol-based vitamin E analogue. Pharm. Res. 2011, 28, 2896−2909.
(23) Lu, J.; Khdour, O. M.; Armstrong, J. S.; Hecht, S. M. Design,
synthesis, and evaluation of an α-tocopherol analogue as a
mitochondrial antioxidant. Bioorg. Med. Chem. 2010, 18, 7628−7638.
(24) Cai, X.; Khdour, O. M.; Jaruvangsanti, J.; Hecht, S. M.
Simplified bicyclic pyridinol analogues protect mitochondrial function.
Bioorg. Med. Chem. 2012, 20, 3584−3595.
(25) Arce, P. M.; Goldschmidt, R.; Khdour, O. M.; Madathil, M. M.;
Jaruvangsanti, J.; Dey, S.; Fash, D. M.; Armstrong, J. S.; Hecht, S. M.
Analysis of the structural and mechanistic factors in antioxidants that
preserve mitochondrial function and confer cytoprotection. Bioorg.
Med. Chem. 2012, 20, 5188−5201.
ASSOCIATED CONTENT
* Supporting Information
■
S
Procedures and characterization for all new compounds,
procedures for biochemical assays, and effects of 1, 4, and 7
on ATP levels in 4-nitrobenzoate-treated human fibroblasts.
This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
*(S.M.H.) Tel: 480-965-6625. Fax: 480-965-0038. E-mail: sid.
■
Funding
This work was supported by a research grant from the
Friedreich’s Ataxia Research Alliance (FARA).
Notes
The authors declare no competing financial interest.
(26) Goldschmidt, R.; Arce, P. M.; Khdour, O. M.; Collin, V. C.;
Dey, S.; Jaruvangsanti, J.; Fash, D. M.; Hecht, S. M. Effects of
cytoprotective antioxidants on lymphocytes from representative
mitochondrial neurodegenerative diseases. Bioorg. Med. Chem. 2013,
21, 969−978.
(27) Pratt, D. A.; DiLabio, G. A.; Brigati, G.; Pedulli, G. F.;
Valgimigli, L. 5-Pyrimidinols: novel chain-breaking antioxidants more
effective than phenols. J. Am. Chem. Soc. 2001, 123, 4625−4626.
(28) Wijtmans, M.; Pratt, D. A.; Valgimigli, L.; DiLabio, G. A.;
Pedulli, G. F.; Porter, N. A. 6-Amino-3-pyridinols: towards diffusion-
controlled chain-breaking antioxidants. Angew. Chem., Int. Ed. 2003,
42, 4370−4373.
REFERENCES
■
(1) Markesbery, W. R.; Carney, J. M. Oxidative alterations in
Alzheimer’s disease. Brain Pathol. 1999, 9, 133−146.
(2) Calabrese, V.; Lodi, R.; Tonon, C.; D’Agata, V.; Sapienza, M.;
Scapagnini, G.; Mangiameli, A.; Pennisi, G.; Stella, A. M.; Butterfield,
D. A. Oxidative stress, mitochondrial dysfunction and cellular stress
response in Friedreich’s ataxia. J. Neurol. Sci. 2005, 233, 145−162.
(3) Lin, M. T.; Beal, M. F. Mitochondrial dysfunction and oxidative
stress in neurodegenerative diseases. Nature 2006, 443, 787−795.
(4) DiMauro, S.; Schon, E. A. Mitochondrial disorders in the nervous
system. Annu. Rev. Neurosci. 2008, 31, 91−123.
(5) Armstrong, J. S.; Khdour, O. M.; Hecht, S. M. Does oxidative
stress contribute to the pathology of Friedreich’s ataxia? A radical
question. FASEB J. 2010, 24, 2152−2163.
(29) Nam, T.-G.; Rector, C. L.; Kim, H.-Y.; Sonnen, A. F.-P.; Meyer,
R.; Nau, W. M.; Atkinson, J.; Rintoul, J.; Pratt, D. A.; Porter, N. A.
Tetrahydro-1,8-naphthyridinol analogues of α-tocopherol as antiox-
idants in lipid membranes and low-density lipoproteins. J. Am. Chem.
Soc. 2007, 129, 10211−10219.
(6) Browne, S. E.; Ferrante, R. J.; Beal, M. F. Oxidative stress in
Huntington’s disease. Brain Pathol. 1999, 9, 147−163.
(7) Newmeyer, D. D.; Ferguson-Miller, S. Mitochondria: Releasing
power for life and unleashing the machineries of death. Cell 2003, 112,
481−490.
(30) Serwa, R.; Nam, T.-G.; Valgimigli, L.; Culbertson, S.; Rector, C.
L.; Jeong, B.-S.; Pratt, D. A.; Porter, N. A. Preparation and
E
dx.doi.org/10.1021/ml400130z | ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX