P. K. Sasmal et al. / Bioorg. Med. Chem. Lett. 21 (2011) 4913–4918
4917
pyrazoles were also tested for rCB1 receptor affinity. In general, a
range of modifications were well tolerated. Several molecules were
identified with low and sub-nanomolar potency as CB1 antago-
nists. The representative molecule 31 displaying excellent potency
for rCB1 and high selectivity over both hCB2 and hERG showed sig-
nificant anti-obesity effect in a DIO mice model after chronic treat-
ment for 15 days. This effect of 31 might come from the peripheral
mode of action along with some contribution of central effect. Be-
sides obesity, the disclosed CB1 ligands might find their application
in pharmacological intervention of other diseases involving CB1
signaling pathways.37
Acknowledgments
We thank Professor Javed Iqbal and Dr. Ranjan Chakrabarti for
their continuous support and encouragement. The support of the
analytical department of Discovery Research is highly appreciated.
Supplementary data
Figure 2. Effect on acute food intake after single dose oral administration of
rimonabant (A: 10 mg/kg dose) and 31 (B: 10 mg/kg dose and C: 30 mg/kg dose) to
SAM versus vehicle control animals.
Supplementary data (synthetic procedures and characterization
data of all compounds 4–42) associated with this article can be
and the results are summarized in Table 5. All of these compounds
have shown decent selectivity over hCB2 and very good inhibition
of CB1 agonist (WIN-55212) induced hypothermia in Swiss Albino
Mice (SAM) model. Few of them were also tested in patch clamp
assay32 to measure their potential to block hERG potassium chan-
nel. Amongst these compound 31 was found to be highly selective
over hERG (Table 5).
Compound 31 has shown dose dependant reduction in acute
food intake (Fig. 2) when tested at 10 and 30 mg/kg po in SAM
model. Rimonabant at a dose of 10 mg/kg po showed better effect
compared to the highest tested dose of 30 mg/kg po of compound
31 suggesting that rimonabant might be having more pronounced
central effect compared to more polar compound 31.34 Compound
31, showing good oral PK profile,35 was evaluated further in a diet-
induced obesity (DIO) mouse model using C57BL/6J mice. On oral
administration, compound 31 (10 mg/kg, q.d.)36 showed steady
loss of body weight culminating in a statistically significant weight
loss of 11% on day 15 as shown in Figure 3.
References and notes
1. Kershaw, E. E.; Flier, J. S. J. Clin. Endocrinol. Metab. 2004, 89, 2548.
2. Kirkham, T. C. Behav. Pharmacol. 2005, 16, 297.
3. Pagotto, U.; Marsicano, G.; Cota, D.; Lutz, B.; Pasquali, R. Endocrinol. Rev. 2006,
27, 73.
4. Matias, I.; Gonthier, M. P.; Orlando, P.; Martiadis, V.; De Petrocellis, L.; Cervino,
C.; Petrosino, S.; Hoareau, L.; Festy, F.; Pasquali, R.; Roche, R.; Maj, M.; Pagotto,
U.; Monteleone, P.; Di Marzo, V. J. Clin. Endocrinol. Metab. 2006, 91, 3171.
5. Hao, S.; Avraham, Y.; Mechoulam, R.; Berry, E. M. Eur. J. Pharmacol. 2000, 392,
147.
6. Engeli, S.; Böhnke, J.; Feldpausch, M.; Gorzelniak, K.; Janke, J.; Bátkai, S.; Pacher,
P.; Harvey-White, J.; Luft, F. C.; Sharma, A. M.; Jordan, J. Diabetes 2005, 54, 2838.
7. Kirkham, T. C.; Williams, C. M.; Fezza, F.; Di Marzo, V. Br. J. Pharmacol. 2002,
136, 550.
8. Ravinet Trillou, C.; Delgorge, C.; Menet, C.; Arnone, M.; Soubrie, P. Int. J. Obes.
2004, 28, 640.
9. Jbilo, O.; Ravinet-Trillou, C.; Arnone, M.; Buisson, I.; Bribes, E.; Péleraux, A.;
Pénarier, G.; Soubrié, P.; Le Fur, G.; Galiègue, S.; Casellas, P. J. FASEB 2005, 19,
1567.
10. Thornton-Jones, Z. D.; Kennett, G. A.; Benwell, K. R.; Revell, D. F.; Misra, A.;
Sellwood, D. M.; Vickers, S. P.; Clifton, P. G. Pharmacol. Biochem. Behav. 2006, 84,
353.
11. Vickers, S. P.; Webster, L. J.; Wyatt, A.; Dourish, C. T.; Kennett, G. A.
Psychopharmacology (Berl.) 2003, 167, 103.
In summary, we have explored novel chemically diverse motifs
as a part of eastern amide SAR on rimonabant template. Few
constrained analogs and central pyrazole core modification with
12. Hildebrandt, A. L.; Kelly-Sullivan, D. M.; Black, S. C. Eur. J. Pharmacol. 2003, 462,
125.
13. Lafontan, M.; Piazza, P. V.; Girard, J. Diabetes Metab. 2007, 33, 85. and reference
cited therein.
14. Adam, J.; Cowley, P. Expert Opin. Ther. Pat. 2002, 12, 1475.
15. Pertwee, R. G. Addict. Biol. 2000, 5, 37.
16. Hall, W. Drug Alcohol Rev. 1998, 17, 433.
17. Hungund, B. L.; Basavarajappa, B. S.; Vadasz, C.; Kunos, G.; de Fonseca, F. R.;
Colombo, G.; Serra, S.; Parsons, L.; Koob, G. F. Alcohol. Clin. Exp. Res. 2002, 26,
565.
18. Pertwee, R. G. Gut 2001, 48, 859.
19. (a) Carrier, E. J.; Kearn, C. S.; Barkmeier, A. J.; Breese, N. M.; Yang, W.;
Nithipatikom, K.; Pfister, S. L.; Cambell, W. B.; Hillard, C. J. Mol. Pharmacol.
2004, 65, 999; (b) Klein, T. W.; Newton, C.; Larsen, K.; Lu, L.; Perkins, I.; Nong,
L.; Friedman, H. J. Leukocyte Biol. 2003, 74, 486.
´
20. (a) Rinaldi-Carmona, M.; Barth, F.; Heaulme, M.; Shire, D.; Calandra, B.; Congy,
C.; Martinez, S.; Maruani, J.; Ne´liat, G.; Caput, D., et al FEBS Lett. 1994, 350, 240;
(b) Lan, R.; Liu, Q.; Fan, P.; Lin, S.; Fernando, S. R.; McCallion, D.; Pertwee, R.;
Makriyannis, A. J. Med. Chem. 1999, 42, 769.
21. (a) Lin, L. S.; Lanza, T. J.; Jewell, J. P.; Liu, P.; Shah, S. K.; Qi, H.; Tong, X.; Wang, J.;
Xu, S.; Fong, T. M.; Shen, C.-P.; Lao, J.; Chen, J.; Shearman, L. P.; Stribling, D. S.;
Rosko, K.; Strack, A.; Marsh, D. J.; Feng, Y.; Kumar, S.; Samuel, K.; Yin, W.; Van
der Ploeg, L.; Goulet, M. T.; Hagman, W. K. J. Med. Chem. 2006, 49, 7584; (b)
Chen, C.-y.; Frey, L. F.; Shultz, S.; Wallace, D. J.; Marcantonio, K.; Payack, J. F.;
Vazquez, E.; Springfield, S. A.; Zhou, G.; Liu, P.; Kieczykowski, G. R.; Chen, A. M.;
Phenix, B. D.; Singh, U.; Strine, J.; Izzo, B.; Krska, S. W. Org. Process Res. Dev.
2007, 11, 616; (c) Lin, L. S.; Ha, S.; Ball, R. G.; Tsou, N. N.; Castonguay, L. A.;
Doss, G. A.; Fong, T. M.; Shen, C. P.; Xiao, J. C.; Goulet, M. T.; Hagmann, W. K. J.
Med. Chem. 2008, 51, 2108.
Figure 3. Effect on body weight after subchronic oral administration of 31 (N
10 mg/kg, q.d.) to DIO mice versus vehicle control animals (d) (n = 9).