Table 3 Intramolecular radical aromatic substitution for
other fused-heterocyclic compoundsa
Substrates
Productsb
X = I, 6a, 77%
X = Br, 6a, 65%
Scheme 2 A proposed mechanism of this process.
6b, 63%
examined to process this cyclization and different fused
heterocycles were built up in good to excellent yields. This
reaction provides a simple, efficient, transition-metal-free
method for the synthesis of fused-heterocyclic structures by
avoiding the use of transition metal catalysts. Further application
of this method is being explored in the lab.
X = I, R = H, 6c, o5%
X = Br, R = H, 6c, o5%
X = I, R = Me, 6d, 78%
X = Br, R = Me, 6d, 76%
X = I, R = Piv, 6e, 27%c
X = I, R = Ts, 6f, o5%
Notes and references
1 A. Bjoerseth, Handbook of Polycyclic Aromatic Hydrocarbons,
Marcel Dekker, New York, NY, 1983.
6g, 76%
2 T. Eicher and S. Hauptmann, The Chemistry of Heterocycles,
Wiley-VCH, 2003.
3 (a) L. Ackermann, R. Vicente and A. R. Kapdi, Angew. Chem., Int.
Ed., 2009, 48, 9792; (b) H. Li and Z. Shi, Prog. Chem., 2010, 22, 1414;
(c) M. Miura and T. Satoh, in Modern Arylation Methods, ed.
L. Ackermann, Wiley-VCH, Weinheim, 2009, pp. 335–362;
(d) D. Alberico, M. E. Scott and M. Lautens, Chem. Rev., 2007,
107, 174; (e) D. R. Stuart and K. Fagnou, Aldrichimica Acta, 2007,
40, 35; (f) I. V. Seregin and V. Gevorgyan, Chem. Soc. Rev., 2007,
36, 1173; (g) D. E. Ames and D. Bull, Tetrahedron, 1982, 38, 383;
(h) D. E. Ames and A. Opalko, Synthesis, 1983, 234; (i) D. E. Ames
and A. Opalko, Tetrahedron, 1984, 40, 1919; (j) D. D. Hennings,
S. Iwasa and V. H. Rawal, J. Org. Chem., 1997, 62, 2; (k) D. Garcia-
Cuadrado, A. A. C. Braga, F. Maseras and A. M. Echavarren, J. Am.
Chem. Soc., 2006, 128, 1066; (l) D. Garcia-Cuadrado, P. de Mendoza,
A. A. C. Braga, F. Maseras and A. M. Echavarren, J. Am. Chem.
Soc., 2007, 129, 6880; (m) S. Pascual, P. de Mendoza, A. A. C. Braga,
F. Maseras and A. M. Echavarren, Tetrahedron, 2008, 64, 6021;
(n) B. Laleu and M. Lautens, J. Org. Chem., 2008, 73, 9164;
(o) R. B. Bedford and C. S. J. Cazin, Chem. Commun., 2002, 2310;
(p) M. Smet, J. Van Dijk and W. Dehaen, Synlett, 1999, 495;
(q) L. Ackermann and A. Althammer, Angew. Chem., Int. Ed.,
2007, 46, 1627; (r) M. Leblanc and K. Fagnou, Org. Lett., 2005,
7, 2849; (s) M. Yagoubi, A. C. F. Cruz, P. L. Nichols, R. L. Elliott
and M. C. Willis, Angew. Chem., Int. Ed., 2010, 49, 7958.
4 (a) W. R. Bowman and J. M. D. Storey, Chem. Soc. Rev., 2007, 36, 1803,
and the references therein; (b) D. P. Curran and A. I. Keller, J. Am.
Chem. Soc., 2006, 128, 13706; (c) D. C. Harrowven, M. I. T. Nunn,
N. A. Newman and D. R. Fenwick, Tetrahedron Lett., 2001, 42, 961.
5 G. B. Bajracharya and O. Daugulis, Org. Lett., 2008, 10, 4625.
6 S. Yanagisawa, K. Ueda, T. Taniguchi and K. Itami, Org. Lett.,
2008, 10, 4673.
X = I, 6h, o5%
X = Br, 6h, o5%
a
All the reactions were carried out on the scale of 0.5 mmol of 5 and in
b
4 mL benzene at 100 1C for 24 h. The yields of all the products were
isolated yields. 0.4 equiv. of 1,10-phenanthroline, instead of neo-
cuproine, was added in these reactions.
c
temperature, 6H-benzo[c]chromen-6-one was obtained in a
high yield (eqn (1)).10
ð1Þ
A possible mechanism is described in Scheme 2. The complex
of KOtBu with neocuproine is considered as a radical precursor.
After a single electron transfer (SET) process with substrate 1,
a radical anion 7 is generated, which further undergoes a
dehalogenation to generate an aryl radical 8 to initiate the
radical process. An intramolecular aromatic substitution of
aryl radical 8 occurs to produce a radical 9 or 10. The
formation of radical 9 is more favored than 10 since 5-exo
annulation is highly preferred to 6-endo in the radical cyclization
process. The thermodynamically stable radical 10 can be
formed via a rearrangement of radical 9. After a deprotona-
tion with the assistance of KOtBu, another radical anion 11 is
generated. Then a radical chain transfer9 occurs between 11
and substrate 1, resulting in the formation of final cyclization
product 2 and the regeneration of radical anion 7.
7 (a) W. Liu, H. Cao, H. Zhang, H. Zhang, K. H. Chung, C. He,
H. Wang, F. Y. Kwong and A. Lei, J. Am. Chem. Soc., 2010,
132, 16737; (b) C.-L. Sun, H. Li, D.-G. Yu, M. Yu, X. Zhou,
X.-Y. Lu, K. Huang, S.-F. Zheng, B.-J. Li and Z.-J. Shi, Nat.
Chem., 2010, 2, 1044; (c) E. Shirakawa, K.-i. Itoh, T. Higashino
and T. Hayashi, J. Am. Chem. Soc., 2010, 132, 15537.
8 E. Shirakawa, X. Zhang and T. Hayashi, Angew. Chem., Int. Ed.,
2011, 50, 4671.
9 A. Studer and D. P. Curran, Angew. Chem., Int. Ed., 2011, 50, 5018.
10 W. R. Bowman, E. Mann and J. Parr, J. Chem. Soc., Perkin Trans.
1, 2000, 2991.
In conclusion, we successfully realized an intramolecular
radical substitution to construct 6H-benzo[c]chromene derivatives
and other fused-heterocyclic compounds.11 Various linkages were
11 When this manuscript was prepared, a report with similar results
appeared: D. S. Roman, Y. Takahashi and A. B. Charette, Org.
Lett., 2011, 13, 3242.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 9813–9815 9815