(13.4 mg, 0.102 mmol, 1.1 eq) in acetonitrile (0.5 mL). The
resulting solution was heated in a closed vessel at 70 ◦C for 48 h.
6 (a) O. Schuster, L. Yang, H. G. Raubenheimer and M. Albrecht,
Chem. Rev., 2009, 109, 3445; (b) M. Melaimi, M. Soleilhavoup and
G. Bertrand, Angew. Chem., Int. Ed., 2010, 49, 8810.
7 (a) M. Paulson, A. Neels and M. Albrecht, J. Am. Chem. Soc., 2008, 130,
13534. See also: (b) T. Karthikeyan and S. Sankararaman, Tetrahedron
Lett., 2009, 50, 5834; (c) K. J. Kilpin, U. S. D. Paul, A.-L. Lee and J.
D. Crowley, Chem. Commun., 2011, 47, 328.
8 A. Poulain, D. Canseco-Gonzalez, R. Hynes-Roche, H. Mu¨ller-
Bunz, O. Schuster, H. Stoeckli-Evans, A. Neels and M. Albrecht,
Organometallics, 2011, 30, 1021.
9 G. Guisado-Barrios, J. Bouffard, B. Donnadieu and G. Bertrand,
Angew. Chem. Int. Ed., 2010, 49, 4759.
10 (a) H. G. Raubenheimer and S. Cronje, J. Organomet. Chem., 2001,
617–618, 170; (b) H. Meguro, T.-A. Koizumi, T. Yamamoto and T.
Kanbara, J. Organomet. Chem., 2008, 693, 1109; (c) A. Weisman,
M. Gozin, H.-B. Kraatz and D. Milstein, Inorg. Chem., 1996, 35,
1792.
1
31P{ H} NMR showed quantitative formation of 13 as a single
product. The solvent was evaporated and the residue was washed
with hexane and toluene (3 ¥ 3 ml) and extracted with THF (3 ¥
3 ml). The combined fractions were evaporated resulting in pure
complex 13 (36 mg, 73%). 1H NMR (CD3CN) d: 4.0 (2H, d, JHP
=
9.9 Hz), 5.5 (2H, d, JHP = 7.2 Hz), 5.91 (2H, s), 7.52–7.89 (24H,
m). 13C NMR (CD3CN) d: 30.4 (d, JCP = 37.5 Hz), 44.7 (d, JCP
43.3 Hz), 125.8 (q, CF3), 129.1, 129.3, 129.5, 129.7, 132.3 (d, JCP
=
=
2.5 Hz), 132.7 (d, JCP = 2.6 Hz), 133.2 (d, JCP = 2.3 Hz), 133.3 (d,
JCP = 2.3 Hz), 133.5 (d, JCP = 2.3 Hz), 133.7(d, JCP = 2.4 Hz), 136.3,
147.3 (C-ipso). 19F NMR (CDCl3) d: -62.5. 31P NMR (CDCl3) d:
44.4 (1P, d, JPP = 436 Hz), 31.28 (1P, d, JPP = 436 Hz). m/z (HRMS-
ESI) M-H 931.0328, C36H29N3F3P2ClPt calcd: 931.0309.
11 (a) A. Meldal and C. W. Tornøe, Chem. Rev., 2008, 108, 2952; (b) P. Wu
and V. V. Fokin, Aldrichim. Acta, 2007, 40, 7.
12 For a review on the use of the Cu(I)-catalyzed azide-alkyne cycloaddi-
tion for adaptable ligand construction, see: H. Struthers, T. L. Mindt
and R. Schibli, Dalton Trans., 2010, 39, 675.
Notes and references
13 Although several instances of Pd(IV) pincer complexes prepared from
Pd(II) precursors have been reported, their preparation was achieved
through the use of strong oxidants such as trivalent iodine compounds.
For examples, see: (a) N. Selander, B. Willy and K. J. Szabo´, Angew.
Chem. Int. Ed., 2010, 49, 4051; (b) M. C. Lagunas, R. A. Gossage, A.
L. Spek and G. van Koten, Organometallics, 1998, 17, 731; (c) A. J.
Canty, Dalton Trans., 2009, 10409; (d) A. J. Canty, T. Rodemann, B.
W. Skelton and A. H. White, Organometallics, 2006, 25, 3996; (e) L.
T. Pilarski, N. Selander, D. Bo¨se and K. J. Szabo´, Org. Lett., 2009, 11,
5518.
‡ Crystal data for 11: pale-brown plates, C17H35I2N3P2Pd, M = 703.62,
˚
triclinic, a = 8.545(2)◦, b = 11.233(2), c = 13.533(3) A, a = 9.60(2), b =
3
¯
˚
88.03(2), g = 85.80(2) , U = 1294.7(5) A , T = 293 K, space group P1 (no
2), Z = 2, 10612 reflections were measured, 4442 unique (Rint = 0.0726)
which were used in all calculations. The final R-factors was 0.0569 for
reflections with I>2s(I) and 0.0934 (all data).
1 (a) G. van Koten and M. Albrecht, Angew. Chem., Int. Ed., 2001, 40,
3750; (b) M. E. van der Boom and D. Milstein, Chem. Rev., 2003, 103,
1759; (c) The Chemistry of Pincer Compounds, ed. Morales-Morales
and C. Jensen, Elsevier, 2007.
2 (a) E. M. Schuster, M. Botoshansky and M. Gandelman, Angew.
Chem., Int. Ed., 2008, 47, 4555; (b) E. M. Schuster, G. Nisnevich, M.
Botoshansky and M. Gandelman, Organometallics, 2009, 28, 5025.
3 E. M. Schuster, M. Botoshansky and M. Gandelman, Organometallics,
2009, 28, 7001.
14 For a review on 195Pt NMR, see: B. M. Still, P. G. A. Kumar, J. R.
Aldrich-Wright and W. S. Price, Chem. Soc. Rev., 2007, 36, 665.
15 Dependence of IR frequencies of CO ligands on the net ionic charge of
the metal is well-documented. See: R. H. Crabtree, The Organometallic
Chemistry of the Transition Metals, John Wiley & Sons, New York, 3rd
edn, 2001, ch. 10, pp. 282.
16 Facile coordination of 1,2,3-triazole derivative to cationic NCN–Pt and
Pd complexes has been documented: B. M. J. M. Suijkerbuijk, B. N. H.
Aerts, H. P. Dijkstra, M. Lutz, A. L. Spek, G. van Koten and R. J. M.
Klein Gebbink, Dalton Trans., 2007, 1273.
4 D. Enders, O. Niemeier and A. Hensler, Chem. Rev., 2007, 107, 5606.
5 N-Heterocyclic Carbenes in Transition Metal Catalysis, ed. F. Glorius,
Springer, 2006.
This journal is
The Royal Society of Chemistry 2011
Dalton Trans., 2011, 40, 8764–8767 | 8767
©