Organic Letters
Letter
Peng, Y.; Zhou, Z.-P.; Pan, C.-X.; Su, G.-F. J. Med. Chem. 2017, 60,
6853. (e) Michael, J. P. Nat. Prod. Rep. 2008, 25, 166. (f) Taylor, A. P.;
Robinson, R. P.; Fobian, Y. M.; Blakemore, D. C.; Jones, L. H.; Fadeyi,
O. Org. Biomol. Chem. 2016, 14, 6611. (g) Khan, I.; Ibrar, A.; Ahmed,
W.; Saeed, A. Eur. J. Med. Chem. 2015, 90, 124. (h) Fang, J.; Zhou, J.
Scheme 6. Plausible Reaction Pathways
Org. Biomol. Chem. 2012, 10, 2389. (i) Akyu
M.; Baltas, N. Bioorg. Chem. 2018, 80, 121.
̈
z, G.; Mentesȩ , E.; Emirik,
̧
(2) (a) Bairy, G.; Das, S.; Begam, H. M.; Jana, R. Org. Lett. 2018, 20,
7107. (b) Viveki, A. B.; Mhaske, S. B. J. Org. Chem. 2018, 83, 8906.
(3) (a) Gudeika, D.; Volyniuk, D.; Mimaite, V.; Lytvyn, R.; Butkute,
R.; Bezvikonnyi, O.; Buika, G.; Grazulevicius, J. V. Dyes Pigm. 2017,
142, 394. (b) Niu, H.; Qi, S.; Han, E.; Tian, G.; Wang, X.; Wu, D. Mater.
Lett. 2012, 89, 63. (c) Ayati, N. S.; Khandandel, S.; Momeni, M.;
Moayed, M. H.; Davoodi, A.; Rahimizadeh, M. Mater. Chem. Phys.
2011, 126, 873.
(4) Selected examples, see: (a) Kirinde Arachchige, P. T.; Yi, C. S. Org.
Lett. 2019, 21, 3337. (b) Li, F.; Lu, L.; Ma, J. Org. Chem. Front. 2015, 2,
1589. (c) Wang, Q.; Lv, M.; Liu, J.; Li, Y.; Xu, Q.; Zhang, X.; Cao, H.
Y.; Zhang, Z.; Zhao, Z.; Zhang, J.; Wang, F. Angew. Chem., Int. Ed. 2018,
57, 12308. (e) Zhang, W.; Meng, C.; Liu, Y.; Tang, Y.; Li, F. Adv. Synth.
Catal. 2018, 360, 3751.
(5) (a) Wu, X. F.; He, L.; Neumann, H.; Beller, M. Chem. - Eur. J.
2013, 19, 12635. (b) He, L.; Li, H.; Neumann, H.; Beller, M.; Wu, X. F.
Angew. Chem., Int. Ed. 2014, 53, 1420. (c) Natte, K.; Neumann, H.; Wu,
X.-F. Catal. Sci. Technol. 2015, 5, 4474. (d) He, L.; Sharif, M.;
Neumann, H.; Beller, M.; Wu, X.-F. Green Chem. 2014, 16, 3763.
(6) Qian, C.; Liu, K.; Tao, S. W.; Zhang, F. L.; Zhu, Y. M.; Yang, S. L. J.
Org. Chem. 2018, 83, 9201.
copper-catalyzed benzylic oxidation17 gives rise to the desired
product 3. Noteworthy, in consideration that the electron-rich
anilines are beneficial to the product formation (see Schemes 3
and 4), path b is believed to be a favorable pathway.
In summary, through an imine-protection strategy, we have
developed an unprecedented aerobic copper-catalyzed three-
component annulation reaction for direct synthesis of
quinazolinones. Being different from the existed approaches
utilizing bifunctional benzenes, the present protocol furnishes
the products from readily available anilines, primary amines, and
HCHO via the formation of three C−N and one C−C bonds in
conjunction with the benzylic functionalization. The significant
merits of good functional group and substrate compatibility,
release of H2O as the byproduct, and the use of the naturally
abundant catalyst makes the developed chemistry a valuable
approach in the construction of quinazolinones.
(7) Phakhodee, W.; Wangngae, S.; Pattarawarapan, M. J. Org. Chem.
2017, 82, 8058.
(8) Yu, X.; Gao, L.; Jia, L.; Yamamoto, Y.; Bao, M. J. Org. Chem. 2018,
83, 10352.
(9) Xie, F.; Chen, Q. H.; Xie, R.; Jiang, H. F.; Zhang, M. ACS Catal.
2018, 8, 5869.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(10) (a) Dubost, E.; Babin, V.; Benoist, F.; Hebert, A.; Barbey, P.;
Chollet, C.; Bouillon, J.-P.; Manrique, A.; Pieters, G.; Fabis, F.; Cailly,
T. Org. Lett. 2018, 20, 6302. (b) Wang, D.-L.; Liu, H.; Yang, D.; Wang,
P.; Lu, Y.; Liu, Y. ChemCatChem 2017, 9, 4206. (c) Zhang, S.; Tan, Z.;
Xiong, B.; Jiang, H. F.; Zhang, M. Org. Biomol. Chem. 2018, 16, 531.
(d) Sarbajna, A.; Dutta, I.; Daw, P.; Dinda, S.; Rahaman, S. M. W.;
Sarkar, A.; Bera, J. K. ACS Catal. 2017, 7, 2786. (e) Liu, J.; Qiu, X.;
Huang, X.; Luo, X.; Zhang, C.; Wei, J.; Pan, J.; Liang, Y.; Zhu, Y.; Qin,
Q.; Song, S.; Jiao, N. Nat. Chem. 2019, 11, 71. (f) Docekal, V.; Simek,
M.; Dracinsky, M.; Vesely, J. Chem. - Eur. J. 2018, 24, 13441.
(11) (a) Liang, T.; Tan, Z.; Zhao, H.; Chen, X.; Jiang, H.; Zhang, M.
ACS Catal. 2018, 8, 2242. (b) Liang, T.; Zhao, H.; Gong, L. Z.; Jiang, H.
F.; Zhang, M. iScience 2019, 15, 127. (c) Chen, X. W.; Zhao, H.; Chen,
C. L.; Jiang, H. F.; Zhang, M. Angew. Chem., Int. Ed. 2017, 56, 14232.
(d) Chen, X.; Zhao, H.; Chen, C.; Jiang, H.; Zhang, M. Chem. Commun.
2018, 54, 9087. (e) Xie, F.; Xie, R.; Zhang, J. X.; Jiang, H. F.; Du, L.;
Zhang, M. ACS Catal. 2017, 7, 4780. (f) Liang, Y.; Jiang, H.; Tan, Z.;
Zhang, M. Chem. Commun. 2018, 54, 10096.
Experimental procedures and spectral data (PDF)
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Notes
The authors declare no competing financial interest.
(12) Zhang, C.; Jiao, N. Angew. Chem., Int. Ed. 2010, 49, 6174.
(13) (a) Wang, J.; Lu, S.; Cao, X.; Gu, H. Chem. Commun. 2014, 50,
5637. (b) Yu, H.; Zhai, Y.; Dai, G.; Ru, S.; Han, S.; Wei, Y. Chem. - Eur. J.
2017, 23, 13883.
(14) Xu, X. W.; Zhang, M.; Jiang, H.; Zheng, J.; Li, Y. Q. Org. Lett.
2014, 16, 3540.
ACKNOWLEDGMENTS
■
We thank the National Key Research and Development
Program of China (2016YFA0602900), Science Foundation
for Distinguished Young Scholars of Guangdong Province
(2014A030306018), and Guangdong Province Science Foun-
dation (2017B090903003) for financial support.
̈
(15) (a) Domling, A.; Wang, W.; Wang, K. Chem. Rev. 2012, 112,
3083.
M.; Li, F.; Sun, F.; Xiang, J.; Ke, M.; Wang, Q. Org. Lett. 2018, 20, 3591.
(17) Xie, H.; Liao, Y.; Chen, S.; Chen, Y.; Deng, G. J. Org. Biomol.
Chem. 2015, 13, 6944.
REFERENCES
■
(1) (a) Anil, S. M.; Shobith, R.; Kiran, K. R.; Swaroop, T. R.; Mallesha,
N.; Sadashiva, M. P. New J. Chem. 2019, 43, 182. (b) Chang, K.-M.;
Chen, L.-C.; Tzeng, C.-C.; Lu, Y.-H.; Chen, I. L.; Juang, S.-H.; Wang,
T.-C. J. Chin. Chem. Soc. 2018, 65, 1110. (c) Brown, C. E.; Kong, T.;
McNulty, J.; D’Aiuto, L.; Williamson, K.; McClain, L.; Piazza, P.;
Nimgaonkar, V. L. Bioorg. Med. Chem. Lett. 2017, 27, 4601. (d) Zhang,
G.-H.; Yuan, J.-M.; Qian, G.; Gu, C.-X.; Wei, K.; Mo, D.-L.; Qin, J.-K.;
D
Org. Lett. XXXX, XXX, XXX−XXX