enhanced antitumor activity have been proposed as a
potential new class of chemotherapeutic agents.10
sphingosine analogs and sphingadienines using this ap-
proach (Figure 2).
Figure 1. Biologically important sphingolipids.
Figure 2. Retrosynthetic analysis of sphingadienines and aro-
matic sphingosine analogs.
Most synthetic approaches to sphingoid alkaloids11À14
are based on the diastereoselective addition of organome-
tallic nucleophiles to Garner’s aldehyde or equivalent
compounds, which entail forming the C3ÀC4 bond or
ring closing metathesis (forming the C4ÀC5 bond). Con-
trariwise, we envisioned that a novel and convenient route
to these compounds would be through coupling of aryl or
vinyl halides to the acetylenic carbamates I to form the
C5ÀC6 bond. To date, few precedents of alkyne-amino-
diol synthons have been described.15 Adequately protected
compounds I would be accessible from the known acet-
ylenic epoxy alcohol 1, which can be prepared in any
configuration by Sharpless asymmetric epoxidation of
the commercially available (E)-2-penten-4-yn-1-ol. Herein
we describe the enantioselective synthesis of aromatic
We obtained the epoxy alcohol 116 by Sharpless
epoxidation17 of commercial (E)-2-penten-4-yn-1-ol in
moderate yield and 90% ee. Treatment of this compound
with benzoyl isocyanate afforded, somewhat surprisingly,
benzoate 2 in good yield.18 In this case, the carbamate
formation, the intramolecular epoxide ring opening, and
the subsequent trans-acylation took place in a one-pot
reaction (Scheme 1). Benzoate 2 is a very convenient chiral
aminodiol synthon, since both chiral centers are clearly
defined and all functional protecting groups would be
easily deprotected by simple hydrolysis.
Scheme 1. Preparation of the Acetylenic Carbamate 2, Key
Intermediate of Our Approach
(10) (a) Struckhoff, A. P.; Bittman, R.; Burow, M. E.; Clejan, S.;
Elliott, S.; Hammond, T.; Tang, Y.; Beckman, B. S. J. Pharmacol. Exp.
Ther. 2004, 309, 523–532. (b) Cuvillier, O.; Levade, T. Pharmacol. Res.
2003, 47, 439–445.
(11) Selected reviews: (a) Morales-Serna, J. A.; Llaveria, J.; Diaz, Y.;
Matheu, M. I.; Castillon, S. Curr. Org. Chem. 2010, 20, 2483–2521. (b)
Curfman, C.; Liotta, D. Methods Enzymol. 2000, 311, 391–440. (c)
Koskinen, P. M.; Koskinen, A. M. P. Synthesis 1998, 1075–1091. (d)
Byun, H. S.; Bittman, R. Phospholipids Handb. 1993, 97–140.
(12) Selected syntheses from Garner’s aldehyde: (a) Murakami, T.;
Hirono, R.; Furusawa, K. Tetrahedron 2005, 61, 9233–9241. (b) Kang,
J.; Garg, H.; Sigano, D. M.; Francella, N.; Blumenthal, R.; Marquez,
V. E. Bioorg. Med. Chem. 2009, 17, 1498–1505. (c) Yang, H.; Liebeskind,
L. S. Org. Lett. 2007, 9, 2993–2995.
(13) Selected synthesis from sugars: (a) Chaudhari, V. D.; Kumar,
K. S. A.; Dhavale, D. D. Org. Lett. 2005, 7, 5805–5807. (b) Nakamura,
T.; Shiozaki, M. Tetrahedron Lett. 1999, 40, 9063–9064.
(14) Selected asymmetric syntheses: (a) Torssell, S.; Somfai, P. Org.
Biomol. Chem. 2004, 2, 1643–1646. (b) Righi, G.; Ciambrone, S.;
D’Achille, C.; Leonelli, A.; Bonini, C. Tetrahedron 2006, 62, 11821–
11826. (c) Llaveria, J.; Diaz, Y.; Matheu, M. I.; Castillon, S. Org. Lett.
2009, 11, 205–208. (d) Morales-Serna, J. A.; Llaveria, J.; Diaz, Y.;
Matheu, M. I.; Castillon, S. Org. Biomol. Chem. 2008, 6, 4502–4504. (e)
Sa-Ei, K.; Montgomery, J. Tetrahedron 2009, 65, 6707–6711.
(15) (a) Boutin, R. H.; Rapoport, H. J. Org. Chem. 1986, 51, 5320–
5327. (b) Hillaert, U.; Boldin-Adamsky, S.; Rozenski, J.; Busson, R.;
Futerman, A. H.; Van Calenbergh, S. Bioorg. Med. Chem. 2006, 14,
5273–5284.
(16) McDonald, F. E.; Gleason, M. M. J. Am. Chem. Soc. 1996, 118,
6648–6659.
(17) (a) Gao, Y.; Klunder, J. M.; Hanson, R. M.; Masamune, H.; Ko,
S. Y.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765–5780. (b)
Katsuki, T.; Martin, V. S. Org. React. (N. Y.) 1996, 48, 1–299.
(18) Al-Rawi, S.; Hinderlich, S.; Reutter, W.; Giannis, A. Angew.
Chem., Int. Ed. 2004, 43, 4366–4370.
Org. Lett., Vol. 13, No. 19, 2011
5185