biological activities, and some of them are clinically used.5a
Similarly, cyclic peptoids are expected to have increased
conformational rigidity and preorganized structures,
potentially enabling them to bind more tightly to target
proteins without a major entropy loss. Thus, cyclic pep-
toids are of great interest as a promising class of peptido-
mimetics. Not surprisingly, there have been a growing
number of reports on synthesis of cyclic peptoids and
cyclic peptoid/peptide hybrids.6
As part of our ongoing efforts to develop novel pepti-
domimetics,6j,8 here we describe the design and facile
synthesis of triazine-bridged bicyclic peptoids 4 as a new
class of macrocyclic peptoids. As demonstrated by many
bicyclic peptides (either naturally occurring or synthesized),9
bicyclic peptoids would have significantly enhanced con-
formational rigidity, compared to monocyclic peptoids,
as well as linear peptoids. Accordingly, bicyclic peptoids
should be able to bind more tightly and specifically to
target proteins. Given the constrained scaffold and rela-
tively large size, bicyclic peptoids could act like protein
epitope mimetics or small protein functional domains
involved in proteinꢀprotein interactions, thus potentially
serving as an excellent source of modulators of proteinꢀ
protein interactions.9d,10
Scheme 1. Solid-Phase Synthesis of Triazine-Bridged Cyclic
Peptoids
Scheme 2. Synthetic Strategy of Triazine-Bridged Bicyclic
Peptoids 4
We have recently reported on triazine-bridged cyclic
peptoids 2.6j In this study, we developed a highly efficient
on-resin cyclization of peptoids with various ring sizes
(with 3 to 10 peptoid residues) via a triazine-derived linker
(Scheme 1). This method provides the convenient synthesis
of cyclic peptoids in a combinatorial fashion. Additionally,
this method allows for direct analysis of cyclic peptoid
structures. That is, oxidative ring-opening reaction with m-
CPBA/NaOH converts the cyclic peptoids into linearized
peptoids, which can be sequenced by mass spectrometry.
Thus, there is no need for encoding when constructing
one-bead-one-compound combinatorial libraries. Notably,
incorporation of a triazine ring into the backbone could
impose additional conformational restrictions on cyclic
peptoids, enabling them to have preorganized structures,
as demonstrated in a number of aryl-bridged cyclic pep-
tides and cyclic peptidomimetics.6b,7
In our previous work,6j macrocyclization was accom-
plished by a nucleophilic attack by the cysteine sulfhydryl
group on a reactive chloride on the triazine (Scheme 1).
Based on this work, we envisaged that if two cysteine
residues are incorporated in a peptoid sequence, the tri-
azine core with two reactive chlorides can be anchored by
the two cysteines, resulting in triazine-bridged bicyclic
peptoid frameworks (Scheme 2). To test this, we first
synthesized a peptoid 3a containing two cysteine residues
spaced by three peptoid residues and a dichlorotriazine on
the N-terminal (Scheme 3).
(6) (a) Titlestad, K.; Groth, P.; Dale, J.; Ali, M. Y.
J. Chem. Soc., Chem. Commun. 1973, 346. (b) Nnanabu, E.; Burgess,
K. Org. Lett. 2006, 8, 1259. (c) Shin, S. B.; Yoo, B.; Todaro, L. J.;
Kirshenbaum, K. J. Am. Chem. Soc. 2007, 129, 3218. (d) Fowler, S. A.;
Stacy, D. M.; Blackwell, H. E. Org. Lett. 2008, 10, 2329. (e) Roy, O.;
Faure, S.; Thery, V.; Didierjean, C.; Taillefumier, C. Org. Lett. 2008, 10,
921. (f) Maulucci, N.; Izzo, I.; Bifulco, G.; Aliberti, A.; De Cola, C.;
Comegna, D.; Gaeta, C.; Napolitano, A.; Pizza, C.; Tedesco, C.; Flot,
D.; De Riccardis, F. Chem. Commun. 2008, 3927. (g) Vaz, B.; Brunsveld,
L. Org. Biomol. Chem. 2008, 6, 2988. (h) Kwon, Y. U.; Kodadek, T.
Chem. Commun. 2008, 5704. (i) Guo, L.; Zhang, D. H. J. Am. Chem. Soc.
2009, 131, 18072. (j) Lee, J. H.; Meyer, A. M.; Lim, H. S. Chem.
Commun. 2010, 46, 8615. (k) Olsen, C. A. ChemBioChem 2010, 11,
152. (l) Yoo, B.; Shin, S. B.; Huang, M. L.; Kirshenbaum, K. Chem.;
Eur. J. 2010, 16, 5528. (m) Khan, S. N.; Kim, A.; Grubbs, R. H.; Kwon,
Y. U. Org. Lett. 2011, 13, 1582.
(7) (a) Jackson, S.; Degrado, W.; Dwivedi, A.; Parthasarathy, A.;
Higley, A.; Krywko, J.; Rockwell, A.; Markwalder, J.; Wells, G.;
Wexler, R.; Mousa, S.; Harlow, R. J. Am. Chem. Soc. 1994, 116, 3220.
(b) Marsault, E.; Hoveyda, H. R.; Peterson, M. L.; Saint-Louis,
C.; Landry, A.; Vezina, M.; Ouellet, L.; Wang, Z.; Ramaseshan, M.;
Beaubien, S.; Benakli, K.; Beauchemin, S.; Deziel, R.; Peeters, T.;
Fraser, G. L. J. Med. Chem. 2006, 49, 7190. (c) Krishnamurthy,
M.; Simon, K.; Orendt, A. M.; Beal, P. A. Angew. Chem., Int. Ed.
2007, 46, 7044. (d) Horne, W. S.; Olsen, C. A.; Beierle, J. M.; Montero,
A.; Ghadiri, M. R. Angew. Chem., Int. Ed. 2009, 48, 4718.
TentaGel S NH2 beads (90 μm) were used for solid-phase
synthesis. First, we conjugated 3-amino-3-(2-nitrophenyl)-
propionic acid (Fmoc-ANP-OH) as a photocleavable
linker, which can be cleaved from beads by UV irradiation
(360 nm, 1 h).6j Then, 4-aminobutanoic acids (Fmoc-Abu-
OH) as a spacer and a p-methoxytriphenylmethyl (Mmt)-
protected cysteine (Fmoc-Cys(Mmt)-OH) were subsequently
(8) Lee, J. H.; Zhang, Q.; Jo, S.; Chai, S. C.; Oh, M.; Im, W.; Lu, H.;
Lim, H. S. J. Am. Chem. Soc. 2011, 133, 676.
(9) (a) Bracken, C.; Gulyas, J.; Taylor, J. W.; Baum, J. J. Am. Chem.
Soc. 1994, 116, 6431. (b) Boger, D. L.; Ichikawa, S.; Tse, W. C.; Hedrick,
M. P.; Jin, Q. J. Am. Chem. Soc. 2001, 123, 561. (c) Lorenz, K. B.;
Diederichsen, U. J. Org. Chem. 2004, 69, 3917. (d) Robinson, J. A.;
Demarco, S.; Gombert, F.; Moehle, K.; Obrecht, D. Drug Discov. Today
2008, 13, 944. (e) Heinis, C.; Rutherford, T.; Freund, S.; Winter, G. Nat.
Chem. Biol. 2009, 5, 502. (f) Ma, B.; Banerjee, B.; Litvinov, D. N.; He, L.;
Castle, S. L. J. Am. Chem. Soc. 2010, 132, 1159.
(10) (a) Arkin, M. R.; Wells, J. A. Nat. Rev. Drug Discov. 2004, 3, 301.
(b) Yin, H.; Hamilton, A. D. Angew. Chem., Int. Ed. 2005, 44, 4130.
(c) Whitty, A.; Kumaravel, G. Nat. Chem. Biol. 2006, 2, 112. (d) Wells,
J. A.; McClendon, C. L. Nature 2007, 450, 1001.
Org. Lett., Vol. 13, No. 19, 2011
5013