Table 3 The ring-closing metathesis of various diolefins in the
presence of CuCl in THFa
Notes and references
1 (a) S.-Y. Hau and S. Chang, in Handbook of Metathesis,
ed. R. H. Grubbs, Wiley VCH, Weinheim, 2003, vol. 2, pp. 5;
(b) R. H. Grubbs and T. M. Trink, in Ruthenium in Organic
Synthesis, ed. S.-I. Murahash, Wiley VCH, Weinheim, 2004,
pp. 153.
2 (a) M. Scholl, S. Ding, C. W. Lee and R. H. Grubbs, Org. Lett.,
1999, 1, 953; (b) T. M. Trnka and R. H. Grubbs, Acc. Chem. Res.,
2001, 34, 18; (c) P. Schwab, M. B. France, J. W. Ziller and
R. H. Grubbs, Angew. Chem., Int. Ed. Engl., 1995, 34, 2039;
(d) P. Schwab, R. H. Grubbs and J. W. Ziller, J. Am. Chem.
Soc., 1996, 118, 100.
3 (a) E. L. Dias, S. T. Nguyen and R. H. Grubbs, J. Am. Chem. Soc.,
1997, 119, 3887; (b) M. S. Sanford, L. M. Henling, M. W. Day and
R. H. Grubbs, Angew. Chem., Int. Ed., 2000, 39, 3451;
(c) M. S. Sanford, M. Ulman and R. H. Grubbs, J. Am. Chem.
Soc., 2001, 123, 749; (d) M. S. Sanford, J. A. Love and
R. H. Grubbs, J. Am. Chem. Soc., 2001, 123, 6543;
(e) J. A. Love, M. S. Sanford, M. W. Day and R. H. Grubbs,
J. Am. Chem. Soc., 2003, 125, 10103.
4 (a) J. A. Love, J. P. Morgan, T. M. Trnka and R. H. Grubbs,
Angew. Chem., Int. Ed., 2002, 41, 4035; (b) M. S. Sanford and
J. A. Love, in Handbook of Metathesis, ed. R. H. Grubbs,
Wiley-VCH, Weinheim, 2003, vol. 1, pp. 129; (c) S. B. Garber,
J. S. Kingsbury, B. L. Gray and A. H. Hoveyda, J. Am. Chem.
Soc., 2000, 122, 8168; (d) H. Wakamatsu and S. Blechert, Angew.
Chem., Int. Ed., 2002, 41, 749; (e) H. Wakamatsu and S. Blechert,
Angew. Chem., Int. Ed., 2002, 41, 2403; (f) F. Boeda, H. Clavier
and S. P. Nolan, Chem. Commun., 2008, 2726; (g) A. Michrowska,
R. Bujok, A. Harutyunyan, V. Sashuk, G. Dolgonos and
K. Grrela, J. Am. Chem. Soc., 2004, 126, 9318.
Tempb Time Yield
Catalyst (1C)
Entry Diolefin
Product
(min) (%)c
1d
2d
3
3a
4a
1-TPPh
1-Me
0
0
240
240
15
15
60
57
10
1-TPPh* 10
1-TPPh 10
1-TPPh* RT
91 (84)e
63
49
4
5f
6
7
8
1-TPPh* RT
1-TPPh
1-Me
15
90 (80)e
30
29
9
3b
3c
4b
4c
1-TPPh*
1-TPPh
1-Me
1-TPPh*
1-TPPh
1-Me
0
0
10
10
(95)e
75
10
11
12
13
14
33
94 (88)e
87
30
15
16
17
1-TPPh* RT
1-TPPh
1-Me
2
99 (77)e
94
33
18
19
20
1-TPPh*
1-TPPh
1-Me
0
10
83 (81)e
79
42
a
5 (a) C. Samojlowicz, M. Bieniek and K. Grela, Chem. Rev., 2009,
109, 3708, and references cited therein; (b) K. M. Kuhn,
J.-B. Bourg, C. K. Chung, S. C. Virgil and R. H. Grubbs, J. Am.
Chem. Soc., 2009, 131, 5313; (c) L. Vieille-Petit, H. Clavier,
A. Linden, S. Blumentritt, S. P. Nolan and R. Dorta, Organo-
metallics, 2010, 29, 775; (d) M. Gatti, L. Vieille-Petit, X. Luan,
R. Mariz, E. Drinkel, A. Linden and R. Dorta, J. Am. Chem. Soc.,
2009, 131, 9498.
Diolefin (0.25 mmol), catalyst (2.5 mmol, 1.0 mol%), CuCl
(0.010 mmol, 4.0 mol%), THF (2.0 mL). RT = room temperature.
b
c
Yield of the product based on the GC internal standard technique.
e
THF (5.0 mL) was used. Isolated yield. 3a (2.5 mmol), 1-TPPh*
d
f
(0.10 mol, 0.040 mol%), CuCl (1.0 mmol, 0.40 mol%) in THF (0.4 mL)
at RT for 60 min.
6 (a) T. Fujihara, K. Semba, J. Terao and Y. Tsuji, Angew. Chem.,
Int. Ed., 2010, 49, 1472; (b) H. Ohta, M. Tokunaga, Y. Obora,
T. Iwai, T. Iwasawa, T. Fujihara and Y. Tsuji, Org. Lett., 2007,
9, 89; (c) O. Niyomura, M. Tokunaga, Y. Obora, T. Iwasawa and
Y. Tsuji, Angew. Chem., Int. Ed., 2003, 42, 1287.
7 (a) T. Fujihara, S. Yoshida, H. Ohta and Y. Tsuji, Angew. Chem.,
Int. Ed., 2008, 47, 8310; (b) T. Fujihara, S. Yoshida, J. Terao and
Y. Tsuji, Org. Lett., 2009, 11, 2121.
8 (a) T. Iwasawa, M. Tokunaga, Y. Obora and Y. Tsuji, J. Am.
Chem. Soc., 2004, 126, 6554; (b) H. Aoyama, M. Tokunaga,
J. Kiyosu, T. Iwasawa, Y. Obora and Y. Tsuji, J. Am. Chem.
Soc., 2005, 127, 10474.
decomposed within a few minutes under these reaction condi-
tions (Fig. S1w).10 1-TPPh* was also a better catalyst for 3b
and 3c as the substrates (entries 9 and 12) as compared with
1-TPPh (entries 10 and 13) and 1-Me (entries 11 and 14). In
the reaction of an allyl ether (3g) and a sulfonamide (3h), both
1-TPPh* (entries 15 and 18) and 1-TPPh (entries 16 and 19)
showed a higher catalytic activity than 1-Me (entries 17
and 20). It is noteworthy that in the presence of CuCl, THF
plays an important role. When the reaction of entry 3 in
Table 3 was carried out in toluene under otherwise identical
reaction conditions, the yield of 4a was reduced significantly to
44%.10 Upon addition of a small amount of THF (0.2 mL)
to toluene (1.8 mL) as solvent, the yield of 4a was recovered to
69%. Coordination of THF to stabilize the catalyst center
must be important.
9 (a) S. H. Hong, A. G. Wenzel, T. T. Salguero, M. W. Day and
R. H. Grubbs, J. Am. Chem. Soc., 2007, 129, 7961; (b) S. H. Hong,
M. W. Day and R. H. Grubbs, J. Am. Chem. Soc., 2004, 126, 7414.
10 See ESI for detailw.
11 T. Vorfalt, K.-J. Wannowius and H. Plenio, Angew. Chem., Int.
Ed., 2010, 49, 5533.
12 (a) E. L. Dias, S. T. Nguyen and R. H. Grubbs, J. Am. Chem. Soc.,
1997, 119, 3887; (b) E. L. Dias and R. H. Grubbs, Organometallics,
1998, 17, 2758; (c) M. Ulman and R. H. Grubbs, J. Org. Chem.,
1999, 64, 7202.
13 When 1-TPPh* was used as a catalyst in entry 1 in Table 1 under
otherwise identical conditions, 4a was obtained in 91% yield after
24 h.
This work was supported by Grant-in-Aid for Scientific
Research on Innovative Areas (‘‘Organic synthesis based on
reaction integration’’ and ‘‘Molecular activation directed to-
ward straightforward synthesis’’) from MEXT, Japan.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 9699–9701 9701