Journal of Medicinal Chemistry
ARTICLE
MgSO4, filtered, and concentrated. Flash chromatography (11ꢀ25%
EtOAc in hexane) provided compound (+)-3a (75.1 mg, 89% yield) as a
colorless amorphous solid. [R]22D = +36.0° (c = 0.65, CHCl3). IR (film,
NaCl): 3336, 2957, 2929, 2857, 2123, 1718, 1653, 1604, 1539, 1500,
1254, 1044, 836, 775 cmꢀ1. 1H NMR (500 MHz, CDCl3) δ: 7.81 (d, J =
8.3 Hz, 2H), 7.33 (brs, 1H), 7.03 (d, J = 8.4 Hz, 2H), 6.54 (ddd, J = 16.7,
10.6, 10.6 Hz, 1H), 5.88 (apparent t, J = 10.9 Hz, 1H), 5.35ꢀ5.13 (m,
5H), 5.11 (d, J = 10.2 Hz, 1H), 5.02 (d, J = 9.9 Hz, 1H), 4.81 (apparent t,
J = 9.1 Hz, 1H), 4.74 (apparent t, J = 5.8 Hz, 1H), 4.59 (ABq, JAB = 6.9
Hz, ΔAB = 28.4 Hz, 2H), 4.50 (apparent t, J = 10.3 Hz, 1H), 3.63 (brs,
1H), 3.56ꢀ3.44 (m, 3H), 3.41 (apparent t, J = 4.0 Hz, 1H), 3.39ꢀ3.30
(m, 1H), 3.34 (s, 3H), 3.06 (apparent t, J = 5.6 Hz, 1H), 2.99ꢀ2.91 (m,
1H), 2.75ꢀ2.66 (m, 1H), 2.60 (qd, J = 7.5, 2.8 Hz, 1H), 2.55ꢀ2.47 (m,
1H), 2.06 (apparent t, J = 12.7 Hz, 1H), 1.91ꢀ1.76 (m, 3H), 1.75ꢀ1.66
(m, 2H), 1.63ꢀ1.54 (m, 1H), 1.57 (s, 3H), 1.23 (d, J = 7.6 Hz, 3H), 0.96
(d, J = 6.7 Hz, 3H), 0.95ꢀ0.84 (m, 12H), 0.91 (s, 9H), 0.87 (s, 9H), 0.85
(s, 9H), 0.72 (d, J = 6.7 Hz, 3H), 0.08 (s, 3H), 0.06 (s, 3H), 0.054
(s, 3H), 0.048 (s, 3H), 0.04 (s, 3H), 0.03 (s, 3H). 13C NMR (125 MHz,
CDCl3) δ: 173.6, 166.7, 158.8, 143.4, 133.9, 133.4, 132.3, 132.1, 132.0,
131.1, 130.8, 130.0, 129.0, 119.1, 118.5, 97.5, 86.4, 79.5, 77.3, 77.0, 74.9,
64.9, 56.2, 44.2, 42.7, 42.5, 40.5, 37.9, 36.1, 35.8, 35.7, 34.6, 34.4, 34.3,
26.4, 26.1, 25.9, 23.3, 18.7, 18.3, 18.1, 17.7, 16.8, 16.7, 16.5, 14.4, 14.2,
10.2, ꢀ3.2, ꢀ3.5, ꢀ4.2, ꢀ4.3, ꢀ4.66, ꢀ4.68. High resolution mass
spectrum (ESI+) m/z 1190.7408 ((M + Na)+; calcd for C62H109N5O10-
Si3Na: 1190.7380).
in computational studies. This material is available free of charge
’ AUTHOR INFORMATION
Corresponding Author
*For A.B.S.: phone, (215) 898-4860; fax, (215) 898-5129;
E-mail, smithab@sas.upenn.edu. For S.B.H.: phone, (718) 430-
2163; fax, (718) 430-8922; E-mail, susan.horwitz@einstein.yu.edu.
’ ACKNOWLEDGMENT
Support was provided by the National Institutes of Health
through the National Institutes of General Medical Sciences and
the National Cancer Institute through grants GM-29028 (A.B.S.)
and CA-077263 (S.B.H.), and the Breast Cancer Research
Foundation (S.B.H.). We also thank Drs. G. Furst and R. Kohli
of the Department of Chemistry NMR and MS Facilities for
obtaining the NMR and high resolution mass spectra.
’ ABBREVIATIONS USED
ESI-HMRS, electrospray ionization high-resolution mass spec-
trometry; TMS, tetramethylsilane; TLC, thin layer chromatog-
raphy; PDB, Protein Data Bank; DISCON: distribution of
solution conformationsNCI, National Cancer Institute; SAR,
structureꢀactivity relationship; MD, molecular dynamics; CDI,
N,N0-carbonyl-diimidazole
Synthesis of (+)-3. To a solution of compound (+)-3a (67 mg,
0.0573 mmol) in MeOH (5 mL) was added aqueous hydrochloric
acid (4M, 4 mL) in 100ꢀ250 μL portions over 7 h at a rate which
minimized precipitation (ca. 8ꢀ30 min intervals), and the sides of flask
were rinsed with MeOH (1 mL). The reaction mixture was stirred at
room temperature for 18 h and diluted with EtOAc (70 mL). The
resulting solution was neutralized with NaHCO3 (1.35 g in H2O 18 mL)
at 0 °C. Phosphate buffer pH 7 (1M, 30 mL) and NaCl (17 g) were
added, and the aqueous layer was extracted with EtOAc (3 ꢁ 70 mL).
The combined organic layers were washed with brine (100 mL), dried
over MgSO4, filtered, and concentrated. The residue was purified three
times by flash chromatography (80% EtOAc in hexane or 3ꢀ6%
MeOH/CH2Cl2) to afford compound (+)-3 (31.1 mg, 69% yield) as
’ REFERENCES
(1) (a) Gunasekera, S. P.; Gunasekera, M.; Longley, R. E.; Shulte, K.
Discodermolide: a new bioactive polyhydroxylated lactone from the
marine sponge Discodermia dissolute. J. Org. Chem. 1990, 55, 4912–4912.
(b) Additions and corrections. J. Org. Chem. 1991, 56, 1346.
(2) Nerenberg, J. B.; Hung, D. T.; Somers, P. K.; Schreiber, S. L.
Total synthesis of the immunosup-pressive agent (ꢀ)-discodermolide.
J. Am. Chem. Soc. 1993, 115, 12621–12622.
(3) Hung, D. T.; Nerenberg, J. B.; Schreiber, S. L. Distinct binding
and cellular properties of synthetic (+)- and (ꢀ)-discodermolides.
Chem. Biol. 1994, 1, 67–71.
(4) (a) Longley, R. E.; Caddigan, D.; Harmody, D.; Gunasekera, M.;
Gunasekera, S. P. Discodermolide—A new, marine-derived immuno-
suppressive compound. I. In vitro studies. Transplantation 1991,
52, 650–656. (b) Longley, R. E.; Caddigan, D.; Harmody, D.; Gunasekera,
M.; Gunasekera, S. P. Discodermolide—A new, marine-derived immuno-
suppressive compound. II. In vivo studies. Transplantation 1991, 52,
656–661.
a colorless amorphous solid. [R]22 = +17.4° (c = 0.10, CHCl3). IR
D
(film, NaCl): 3359, 2968, 2123, 1699, 1639, 1604, 1543, 1501, 1457,
1284, 1120, 1032, 731 cmꢀ1. 1H NMR (500 MHz, CDCl3) δ: 7.81 (d,
J = 8.5 Hz, 2H), 7.26 (br, 1H), 7.06 (d, J = 8.4 Hz, 2H), 6.55 (ddd, J =
16.6, 10.6, 10.6 Hz, 1H), 5.84 (apparent t, J = 11.0 Hz, 1H), 5.54ꢀ5.41
(m, 3H), 5.26 (t, J = 10.4 Hz, 1H), 5.17ꢀ5.05 (m, 3H), 4.76ꢀ4.66 (m,
2H), 4.61 (apparent t, J = 9.3 Hz, 1H), 3.70 (br m, 1H), 3.57ꢀ3.44 (m,
2H), 3.43ꢀ3.31 (m, 2H), 3.29ꢀ3.16 (m, 3H), 3.00ꢀ2.91 (m, 1H),
2.83ꢀ2.74 (m, 1H), 2.68 (qd, J = 7.3, 4.6 Hz, 1H), 2.63ꢀ2.51 (m, 2H),
2.40ꢀ2.20 (br, 2H), 2.00ꢀ1.74 (m, 6H), 1.69ꢀ1.62 (m, 1H), 1.58 (s,
3H), 1.28 (d, J = 7.3 Hz, 3H), 1.06 (d, J = 6.9 Hz, 3H), 1.01 (d, J = 6.8 Hz,
3H), 0.93 (apparent d, J = 6.8 Hz, 6H), 0.90 (d, J = 6.6 Hz, 3H), 0.82 (d,
J = 6.5 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ: 174.6, 167.2, 158.4,
143.6, 134.5, 133.9, 133.6, 133.0, 132.3, 130.6, 130.0, 129.6, 129.1, 119.2,
118.3, 79.4, 78.9, 77.4, 75.2, 73.1, 64.4, 43.3, 42.0, 41.2, 40.5, 37.4, 36.2,
36.0, 35.94, 35.91, 34.9, 33.0, 23.4, 18.8, 17.5, 16.7, 15.7, 14.2, 12.8, 9.3.
High resolution mass spectrum (ESI+) m/z 804.4495 ((M + Na)+; calcd
for C42H63N5O9Na: 804.4523).
(5) Data is available through Development Therapeutics Program
(6) Kowalski, R. J.; Giannakakou, P.; Gunasekera, S. P.; Longley,
R. E.; Day, B. W.; Hamel, E. The microtubule-stabilizing agent dis-
codermolide competitively inhibits the binding of paclitaxel (taxol) to
tubulin polymers, enhances tubulin nucleation reactions more potently
than paclitaxel, and inhibits the growth of paclitaxel-resistant cells. Mol.
Pharmacol. 1997, 52, 613–622.
(7) (a) See ref 2. (b) Smith, A. B., III; Qiu, Y.; Jones, D. R.;
Kobayashi, K. Total synthesis of (ꢀ)-discodermolide. J. Am. Chem.
Soc. 1995, 117, 12011–12012. (c) Harried, S. S.; Yang, G.; Strawn, M. A.;
Myles, D. C. Total Synthesis of (ꢀ)-Discodermolide: An Application of
a Chelation-Controlled Alkylation Reaction. J. Org. Chem. 1997,
62, 6098–6099. (d) Marshall, J. A.; Johns, B. A. Total Synthesis of
(+)-Discodermolide. J. Org. Chem. 1998, 63, 7885–7892. (e) Smith,
A. B., III; Kaufman, M. D.; Beauchamp, T. J.; LaMarche, M. J.; Arimoto,
H. Gram Scale Synthesis of (+)-Discodermolide. Org. Lett. 1999,
1, 1823–1826. (f) Paterson, I.; Florence, G. J.; Gerlach, K.; Scott, J. P.;
’ ASSOCIATED CONTENT
1
Supporting Information. H and 13C NMR spectra, experi-
S
b
mental methods and synthetic procedures of (+)-3ꢀ(+)-20;
HPLC data of (+)-3ꢀ(+)-7 used in biological assays; NMR data
utilized in solution conformation calculations; SAR data employed
6325
dx.doi.org/10.1021/jm200692n |J. Med. Chem. 2011, 54, 6319–6327