5036
Z. Yu et al. / Bioorg. Med. Chem. Lett. 21 (2011) 5033–5036
BocHN
NHBoc
BocHN
N
Me
CO2Me
NHBoc
N
N
N
Me
CO2Me
N
N
302 nm, ACN/PBS
or 365 nm, ACN/PBS
2
17
Me
Me
O
MeO2C
Me
CO2Me
MeO2C
N
N
N
N
N
O
Me
CO2Me
302 nm, CHCl3
or 365 nm, CH2Cl2
O
O
7
N
3
18
Scheme 4.
may prove critical for their use as ‘photoclick’ reagents in visualiz-
ing and perturbing the alkene-tagged proteins in living cells.7 De-
tailed characterization of these two compounds and additional
structural modifications are currently underway and will be re-
ported in due course.
Sample
UV (nm)
1
-
2
3
4
5
-
6
8
302
365
395
302
365
395
Acknowledgment
We gratefully acknowledge the National Institutes of Health
R01 GM 085092 for financial support.
Supplementary data
tetrazole
2
tetrazole
3
Figure 2. Fluorescence images of tetrazoles 2 and 3 after the photo-irradiation with
methyl methacrylate in acetonitrile/PBS buffer (1:1) and chloroform, respectively;
kex = 365 nm. The concentrations of tetrazole and methyl methacrylate were
Supplementary data associated with this article can be found, in
100 lM and 10 mM, respectively, and the duration of photoirradiation was 10 min.
References and notes
1. Swartz, T. E.; Tseng, T.-S.; Frederickson, M. A.; Paris, G.; Comerci, D. J.;
Rajashekara, G.; Kim, J.-G.; Mudgett, M. B.; Splitter, G. A.; Ugalde, R. A.;
Goldbaum, F. A.; Briggs, W. R.; Bogomolni, R. A. Science 2007, 317, 1090.
2. Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C. A.; Motoshima, H.; Fox, B. A.;
Le Trong, I.; Teller, D. C.; Okada, T.; Stenkamp, R. E.; Yamamoto, M.; Miyano, M.
Science 2000, 289, 739.
cent (Fig. S2). To gain insight about the intrinsic photoreactivity of
tetrazoles 3–5, we dissolved these compounds in chloroform and
examined their reactivity towards methyl methacrylate under
302, 365 or 395 nm irradiation. Interestingly, the coumarin-fused
tetrazole 3 showed bright ‘turn-on’ fluorescence after exposure
to the 302 or 365 nm lamp (Fig. 2); tetrazoles 4 and 5 were brightly
fluorescent before and after the photoirradiation and the TLC mon-
itoring showed no detectable new spots (Fig. S3).
To confirm the fluorescence screening results, we carried out
the photoinduced cycloaddition reactions with tetrazoles 2 and 3
on a preparative scale (Scheme 4). For tetrazole 2 under 302 nm
UV irradiation for 2 h, the expected pyrazoline product 17 was ob-
tained in 89% isolated yield. Using the purified 17 as a positive con-
trol in the HPLC-based analysis (Fig. S4), the same reaction on an
analytical scale showed a conversion of 90% under 365 nm photoir-
radiation for only 5 min. Similarly, the pyrazoline product 18 was
isolated in 68% yield after tetrazole 3 was irradiated at 302 nm in
chloroform for 1.5 h, and 13% yield when 365 nm UV lamp was
used for 6 h. The reduced yield seen at 365 nm was presumably
due to the significantly lower molar absorption coefficient at
365 nm compared to 302 nm (Table 1).
3. Hegemann, P.; Möglich, A. Nat. Methods 2011, 8, 39.
4. (a) Curley, K.; Lawrence, D. S. J. Am. Chem. Soc. 1998, 120, 8573; (b) Ghosh, M.;
Song, X.; Mouneimne, G.; Sidani, M.; Lawrence, D. S.; Condeelis, J. S. Science
2004, 304, 743; (c) Wu, N.; Deiters, A.; Cropp, T. A.; King, D.; Schultz, P. G. J. Am.
Chem. Soc. 2004, 126, 14306; (d) Chou, C.; Young, D. D.; Deiters, A. Angew.
Chem., Int. Ed. 2009, 48, 5950; (e) Gautier, A.; Deiters, A.; Chin, J. W. J. Am. Chem.
Soc. 2011, 133, 2124.
5. (a) Lien, L.; Jaikaran, D. C. J.; Zhang, Z.; Woolley, G. A. J. Am. Chem. Soc. 1996, 118,
12222; (b) Banghart, M. R.; Volgraf, M.; Trauner, D. Biochemistry 2006, 45,
15290; (c) Volgraf, M.; Gorostiza, P.; Numano, R.; Kramer, R. H.; Isacoff, E. Y.;
Trauner, D. Nat. Chem. Biol. 2006, 2, 47.
6. (a) Wang, Y.; Rivera Vera, C. I.; Lin, Q. Org. Lett. 2007, 9, 4155; (b) Song, W.;
Wang, Y.; Qu, J.; Madden, M. M.; Lin, Q. Angew. Chem., Int. Ed. 2008, 47, 2832.
7. (a) Song, W.; Wang, Y.; Qu, J.; Lin, Q. J. Am. Chem. Soc. 2008, 130, 9654; (b)
Wang, Y.; Song, W.; Hu, W. J.; Lin, Q. Angew. Chem., Int. Ed. 2009, 48, 5330; (c)
Song, W.; Wang, Y.; Yu, Z.; Vera, C. I.; Qu, J.; Lin, Q. ACS Chem. Biol. 2010, 5, 875.
8. (a) Wang, Y.; Lin, Q. Org. Lett. 2009, 10, 3570; (b) Wang, J.; Zhang, W.; Song, W.;
Wang, Y.; Yu, Z.; Li, J.; Wu, M.; Wang, L.; Zang, J.; Lin, Q. J. Am. Chem. Soc. 2010,
132, 14812.
9. Yu, Z.; Lim, R. K.; Lin, Q. Chem. Eur. J. 2010, 16, 13325.
10. Wang, Y.; Hu, W. J.; Song, W.; Lim, R. K. V.; Lin, Q. Org. Lett. 2008, 10, 3725.
11. Böhm, H.-J.; Flohr, A.; Stahl, M. Drug Discov. Today: Technol. 2004, 1, 217.
12. Ito, S.; Tanaka, Y.; Kakehi, A.; Kondo, K. Bull. Chem. Soc. Jpn. 1976, 49, 1920.
13. For recent examples, see: (a) Saito, Y.; Suzuki, A.; Imai, K.; Nemoto, N.; Saito, I.
Tetrahedron Lett. 2010, 51, 2606; (b) Saito, Y.; Koda, M.; Shinohara, Y.; Saito, I.
Tetrahedron Lett. 2011, 52, 491.
In summary, we have identified two long-wavelength photoac-
tivatable diaryltetrazoles containing either naphthalene or couma-
rin chromophore. The naphthalene-derived tetrazole showed
excellent long-wavelength photoreactivity in an acetonitrile/PBS
mixed solvent. Additionally, both tetrazoles produced bright pyr-
azoline fluorophores upon the cycloaddition reactions, which
14. Turro, N. J. Modern Molecular Photochemistry; Benjamin/Cummins Pub. Co.:
California, 1978.