The Journal of Organic Chemistry
ARTICLE
MHz, DMSO-d6) δ 159.7, 155.5, 152.8 (C200), 150.5 (C8), 147.0 (C4),
132.7, 132.6, 129.2 (C400), 127.8 (C500), 126.7 (C700), 122.6 (C600), 121.3
(C800), 119.0 (C300), 114.6 (C100), 100.8, 87.6 (C40), 81.8 (C10), 71.6
(C30), 62.6 (C50), 36.3 (C20). UVꢀvis: 220 nm (6.8 ꢁ 104 Mꢀ1 cmꢀ1),
226 nm (7.5 ꢁ 104 Mꢀ1 cmꢀ1), 297 nm (2.5 ꢁ 103 Mꢀ1 cmꢀ1). HRMS
(ESI+-TOF): [M + Na]+ calcd for C20H19N5O6Na, 448.1233, found
448.1229; ESI+-MS/MS for the free base [(M + H)+ = 310] = 166. 2a/2b
1H NMR (500 MHz, DMSO-d6) δ 8.97 (s, 1 H), 8.59 (d, J = 8.21 Hz,
1H), 7.89 (s, 1 H), 7.86 (d, J = 8.03 Hz, 1 H), 7.49 (t, J = 8.14 Hz, 1 H),
7.35 (t, 1 H), 7.15 (d, 1 H), 6.64 (b, 2 H), 5.75 (dd, J = 6.33 and 6.01 Hz, 1
H), 5.65 (dd, J = 8.07 and 6.03 Hz, 5.39 (s, 1 H), 5.02(b, 1 H), 4.24 (ddd,
J = 5.70, 5.43, and 4.50 Hz, 1 H), 3.70 (td, J = 3.81 Hz, 1 H), 3.51 (m, 2
H), 2.81 (ddd, J = 6.05 Hz, 1 H), 1.85 (ddd, 1 H). 13C NMR (125 MHz,
DMSO-d6) δ 159.7, 156.2 (C8), 155.9 (C200), 155.7, 132.6 (C400), 130.0
(C900), 129.5 (C1000), 128.6 (C500), 127.2 (C700), 124.4 (C800), 123.6
(C600), 118.1 (C100), 112.2 (C300), 86.4 (C40), 82.5 (C10), 71.5 (C30),
63.1, 62.5 (C50), 36.8 (C20). UVꢀvis: 220 nm (3.9 ꢁ 103 Mꢀ1 cmꢀ1),
227 nm (4.6 ꢁ 103 Mꢀ1 cmꢀ1) HRMS (ESI+-TOF) [M + Na]+ calcd for
C20H19N5O6Na, 448.1233, found 448.1229; ESI+-MS/MS for the free
base [(M + H)+ = 310] = 293, 267, 249, 225, 182, 166, and 86. 3a/3b
HRMS (ESI+-TOF) [M + Na]+ calcd for C21H21N5O6Na 462.1390,
found 462.1360; ESI+-MS/MS for the free base [(M + H)+ = 324] = 180.
4a/4b HRMS (ESI+-TOF) [M + Na]+ calcd for C21H21N5O6Na
462.1390, found 462.1391; ESI+-MS/MS for the free base [(M + H)+
= 324] = 307, 267, 225, 182, 100. 5a/5b HRMS (ESI+-TOF) [M + Na]+
calcd for C24H27N5O6Na 504.1859, found 504.1863; ESI+-MS/MS for
the free base [(M + H+)+ = 366] = 323, 222, 182, 142.
Oxidation with HRP/H2O2. Literature protocols were followed
to synthesize tri-O-acetyl-OG.95 A 200-μL solution of tri-O-acetyl-
OG (3 mM, 0.60 μmoles, 0.17 mg) and each individual phenol
(0.5ꢀ5 mM, 0.10ꢀ0.50 μmoles, 0.014ꢀ0.072 mg) was mixed in sodium
phosphate buffer (75 mM, pH 6.4, 7.4, 8.4) and H2O2 (0.5ꢀ5 mM,
0.10ꢀ0.50 μmoles, 3ꢀ14 μg). The reaction was initiated by the addition
of HRP (2.5 U) and kept at 22 °C for 60 min. The reaction mixture was
analyzed by HPLC.
Synthesis of N1-methyl-dOG. To a solution of dOG (50 mg,
177 μmoles) in 1 mL of DMSO at 22 °C was added K2CO3 (2.0 mg,
14 μmoles), followed by addition of four mole equivalents of CH3I
(0.1 g, 708 μmoles), and the mixture was stirred for 48 h. The reaction
afforded N1-methyl-dOG as a white solid (mp = 225.4ꢀ227.0, decom-
posed), 10 mg (34 μmoles, 20% yield). 1H NMR (DMSO-d6) δ 10.60
(b, 1 H), 7.05 (b, 2 H), 6.02 (dd, J = 7.03 Hz, 1 H), 5.11 (b, 1 H), 4.71 (t,
J = 5.08 Hz, 1H), 4.30 (s, 1 H), 3.70 (s, 1 H), 3.54 (m, J = 4.89 Hz, 1H),
3.29 (s, 3 H), 3.23 (ddd, J = 4.30 Hz, 1 H), 2.96 (ddd, J = 7.81 Hz, 1 H),
1.89 (ddd, J = 6.45 Hz, 1 H). 13C NMR (125 MHz, DMSO-d6) δ 153.6,
151.7, 150.9, 145.5, 97.9, 87.2, 80.9, 71.3, 62.3, 28.1. HRMS (ESI+-TOF)
[M + H]+ calcd for C11H16N5O5 298.1151, found 298.1162.
2a/2b, 3a/3b, 4a/4b, and 5a/5b, N1-methyl-dG, and N2-
diethyl-dOG. HPLC and MS data for the decomposition of
1a/1b and 2a/2b and the pH dependence of the decomposition
of 2a/2b. This material is available free of charge via the Internet
’ AUTHOR INFORMATION
Corresponding Author
*Phone: (801) 585-7290. Fax: (801) 585-0024. E-mail: burrows@
chem.utah.edu.
’ ACKNOWLEDGMENT
This work was supported by a grant by the NSF 0809483. We
are grateful for the instrumental and technical assistance pro-
vided by Dr. Charles Mayne, Dr. Xiaoyun Xu, and Dr. Yu Ye.
’ REFERENCES
(1) Burrows, C. J.; Muller, J. G. Chem. Rev. 1998, 98, 1109–1152.
(2) Bolton, J. L.; Trush, M. A.; Penning, T. M.; Dryhurst, G.; Monks,
T. J. Chem. Res. Toxicol. 2000, 13, 135–160.
(3) Bolton, J. L. Toxicology 2002, 177, 55–56.
(4) Nutter, L. M.; Wu, Y. Y.; Ngo, E. O.; Sierra, E. E.; Gutierrez, P. L.;
Abul-Hajj, Y. J. Chem. Res. Toxicol. 1994, 7, 23–28.
(5) Shen, L.; Qiu, S.; van Breemen, R. B.; Zhang, F.; Chen, Y.;
Bolton, J. L. J. Am. Chem. Soc. 1997, 119, 11126–11127.
(6) Akanni, A.; Abul-Hajj, Y. J. Chem. Res. Toxicol. 1999, 12, 1247–
1253.
(7) Stack, D. E.; Byun, J.; Gross, M. L.; Rogan, E. G.; Cavalieri, E. L.
Chem. Res. Toxicol. 1996, 9, 851–859.
(8) Veldhuyzen, W. F.; Lam, Y. F.; Rokita, S. E. Chem. Res. Toxicol.
2001, 14, 1345–1351.
(9) Pande, P.; Shearer, J.; Yang, J.; Greenberg, W. A.; Rokita, S. E.
J. Am. Chem. Soc. 1999, 121, 6773–6779.
(10) Nguyen, T. N. T.; Bertagnolli, A. D.; Villalta, P. W.; Buhlmann,
P.; Sturla, S. J. Chem. Res. Toxicol. 2005, 18, 1770–1776.
(11) Vaidyanathan, V. G.; Villalta, P. W.; Sturla, S. J. Chem. Res.
Toxicol. 2007, 20, 913–919.
(12) Dai, J.; Sloat, A. L.; Wright, M. W.; Manderville, R. A. Chem. Res.
Toxicol. 2005, 18, 771–779.
(13) Jowa, L. W., G.; Snyder, R.; Winkle, S.; Kalf, G. F. J. Appl.
Toxicol. 1990, 10, 47–54.
(14) Penning, T. M.; Burczynski, M. E.; Hung, C. F.; McCoull, K. D.;
Palackal, N. T.; Tsuruda, L. S. Chem. Res. Toxicol. 1999, 12, 1–18.
(15) McCoull, K. D.; Rindgen, D.; Blair, I. A.; Penning, T. M. Chem.
Res. Toxicol. 1999, 12, 237–246.
(16) Dai, J.; Wright, M. W.; Manderville, R. A. Chem. Res. Toxicol.
2003, 16, 817–821.
(17) Stemmler, A. J.; Burrows, C. J. J. Am. Chem. Soc. 1999, 121,
Synthesis of N2-diethyl-dOG. To a solution of dOG (15 mg,
53 μmoles) in 40:60 MeOH/H2O was added 80 μL acetaldehyde
(63.1 mg, 1.4 mmol) and NaBH3CN (35 mg, 558 μmoles). The resulting
mixture was refluxed for 48 h. The reaction afforded N2-diethyl-dOG as a
white solid (mp = 182.3ꢀ185.1, decomposed), 5 mg (15 μmoles, 33%
yield). 1H NMR (500 MHz, DMSO-d6) δ 10.62 (b, 2 H), 6.02 (dd, J =
7.81 Hz, 1 H), 5.39 (s, 1 H), 5.14 (d, J = 3.12 Hz, 1 H), 4.72 (t, J = 4.69 Hz,
1 H), 4.32 (d, J = 3.12 Hz, 1 H), 3.70 (q, J = 4.68 Hz, 1 H), 3.52 (q, J = 7.81
Hz, 1 H), 3.04 (dt, J = 6.25 Hz, 4 H), 1.94 (m, J = 3.12 Hz, 1 H), 1.09 (t, J =
6.25 Hz, 6 H). 13C NMR (125 MHz, DMSO-d6) δ 166.62, 152.55, 146.38,
87.52, 84.75, 81.22, 71.77, 63.08, 36.19, 42.53, 13.67. HRMS (ESI+-TOF)
[M + H]+ calcd for C14H21N5O5Na 362.1440, found 362.1418.
6956–6957.
(18) Muller, J. G.; Kayser, L. A.; Paikoff, S. J.; Duarte, V.; Tang, N.;
Perez, R. J.; Rokita, S. E.; Burrows, C. J. Coord. Chem. Rev. 1999,
185ꢀ186, 761–774.
(19) Steenken, S.; Jovanovic, S. V. J. Am. Chem. Soc. 1997, 119,
617–618.
(20) Pratviel, G.; Meunier, B. Chem.—Eur. J. 2006, 12, 6018–6030.
(21) Matter, B.; Malejka-Giganti, D.; Csallany, A. S.; Tretyakova, N.
Nucleic Acids Res. 2006, 34, 5449–5460.
(22) Fleming, A. M.; Muller, J. G.; Ji, I.; Burrows, C. J. Org. Biomol.
Chem. 2011, 9, 3338–3348.
(23) Ghude, P.; Schallenberger, M. A.; Fleming, A. M.; Muller, J. G.;
Burrows, C. J. Inorg. Chim. Acta 2011, 369, 240–246.
(24) Ye, W.; Sangaiah, R.; Degen, D. E.; Gold, A.; Jayaraj, K.;
Koshlap, K. M.; Boysen, G.; Williams, J.; Tomer, K. B.; Mocanu, V.;
’ ASSOCIATED CONTENT
Supporting Information. All UVꢀvis, HPLC, ESI+-MS,
S
b
ESI+-MS/MS, NMR spectral data for compounds 1a/1b and
7962
dx.doi.org/10.1021/jo201423n |J. Org. Chem. 2011, 76, 7953–7963