Journal of the American Chemical Society
Page 6 of 8
1
2
3
4
5
6
7
8
9
Micro-Tubing Reactor System. Chem. Sci. 2017, 8, 3623.
Combined Use of Rh(I) and Photoredox Catalysts. Chem. Commun. 2017,
53, 3098. (c) Seo, H.; Liu, A.; Jamison, T. F. Direct β-Selective Hydrocar-
boxylation of Styrenes with CO2 Enabled by Continuous Flow Photoredox
Catalysis. J. Am. Chem. Soc. 2017, 139, 13969. (d) Meng, Q.-Y.; Wang, S.;
Huff, G. S.; König, B. Ligand-Controlled Regioselective Hydrocarboxyla-
tion of Styrenes with CO2 by Combining Visible Light and Nickel Catalysis.
J. Am. Chem. Soc. 2018, 140, 3198. (e) Hou, J.; Ee, A.; Feng, W.; Xu, J.-
H.; Zhao, Y.; Wu, J. Visible-Light-Driven Alkyne Hydro-/Carbocarboxy-
lation Using CO2 via Iridium/Cobalt Dual Catalysis for Divergent Hetero-
cycle Synthesis. J. Am. Chem. Soc. 2018, 140, 5257. (f) Ju, T.; Fu, Q.; Ye,
J.-H.; Zhang, Z.; Liao, L.-L.; Yan, S.-S.; Tian, X.-Y.; Luo, S.-P.; Li, J.; Yu,
D.-G. Selective and Catalytic Hydrocarboxylation of Enamides and Imines
with CO2 to Generate α, α-Disubstituted α-Amino Acids. Angew. Chem.,
Int. Ed. 2018, 57, 13897. (g) Fan, X.; Gong, X.; Ma, M.; Wang, R.; Walsh,
P. J. Visible Light-Promoted CO2 Fixation with Imines to Synthesize Diaryl
α-Amino Acids. Nat. Commun. 2018, 9, 4936.
(14) (a) Masuda, Y.; Ishida, N.; Murakami, M. Light-Driven Carboxyla-
tion of O-Alkylphenyl Ketones with CO2. J. Am. Chem. Soc. 2015, 137,
14063. (b) Ishida, N.; Masuda, Y.; Uemoto, S.; Murakami, M. A Light/Ke-
tone/Copper System for Carboxylation of Allylic C–H Bonds of Alkenes
with CO2. Chem. Eur. J. 2016, 22, 6524. (c) Seo, H.; Katcher, M. H.;
Jamison, T. F. Photoredox Activation of Carbon Dioxide for Amino Acid
Synthesis in Continuous Flow. Nat. Chem. 2017, 9, 453. (d) Wang, M.-Y.;
Cao, Y.; Liu, X.; Wang, N.; He, L.-N.; Li, S.-H. Photoinduced Radical-
Initiated Carboxylative Cyclization of Allyl Amines with Carbon Dioxide.
Green Chem. 2017, 19, 1240. (e) Shimomaki, K.; Murata, K.; Martin, R.;
Iwasawa, N. Visible-Light-Driven Carboxylation of Aryl Halides by the
Combined Use of Palladium and Photoredox Catalysts. J. Am. Chem. Soc.
2017, 139, 9467. (f) Meng, Q.-Y.; Wang, S.; König, B. Carboxylation of
Aromatic and Aliphatic Bromides and Triflates with CO2 by Dual Visible-
Light-Nickel Catalysis. Angew. Chem., Int. Ed. 2017, 56, 13426. (g) Sun,
L.; Ye, J.-H.; Zhou, W.-J.; Zeng, X.; Yu, D.-G. Oxy-Alkylation of Allyla-
mines with Unactivated Alkyl Bromides and CO2 via Visible-Light-Driven
Palladium Catalysis. Org. Lett. 2018, 20, 3049. (h) Yin, Z.-B.; Ye, J.-H.;
Zhou, W.-J.; Zhang, Y.-H.; Ding, L.; Gui, Y.-Y.; Yan, S.-S.; Li, J.; Yu, D.-
G. Oxy-Difluoroalkylation of Allylamines with CO2 via Visible-Light Pho-
toredox Catalysis. Org. Lett. 2018, 20, 190. (i) Liao, L.-L.; Cao, G.-M.; Ye,
J.-H.; Sun, G.-Q.; Zhou, W.-J.; Gui, Y.-Y.; Yan, S.-S.; Shen, G.; Yu, D.-G.
Visible-Light-Driven External-Reductant-Free Cross-Electrophile Cou-
plings of Tetraalkyl Ammonium Salts. J. Am. Chem. Soc. 2018, 140, 17338.
(j) Meng, Q.-Y.; Schirmer, T. E.; Berger, A. L.; Donabauer, K.; König, B.
Photocarboxylation of Benzylic C–H Bonds. J. Am. Chem. Soc. 2019, 141,
11393.
(9) For reviews on reactions using aryl radicals generated from aryl halides:
(a) Arora, A.; Weaver, J. D. Visible Light Photocatalysis for the Generation
and Use of Reactive Azolyl and Polyfluoroaryl Intermediates. Acc. Chem.
Res. 2016, 49, 2273. (b) Qiu, G.; Li, Y.; Wu, J. Recent Developments for
the Photoinduced Ar–X Bond Dissociation Reaction. Org. Chem. Front.
2016, 3, 1011. (c) Liu, W.; Li, J.; Huang, C. Y.; Li, C.-J., Aromatic Chem-
istry in the Excited State: Facilitating Metal-Free Substitutions and Cross-
Couplings. Angew. Chem. Int. Ed. 2020, 59, 1786.
(10) (a) Cheng, Y.; Gu, X.; Li, P., Visible-Light Photoredox in Homolytic
Aromatic Substitution: Direct Arylation of Arenes with Aryl Halides. Org.
Lett. 2013, 15, 2664. (b) Ghosh, I.; Ghosh, T.; Bardagi, J. I.; König, B. Re-
duction of Aryl Halides by Consecutive Visible Light-Induced Electron
Transfer Processes. Science 2014, 346, 725. (c) Devery, J. J.; Nguyen, J. D.;
Dai, C.; Stephenson, C. R. J., Light-Mediated Reductive Debromination of
Unactivated Alkyl and Aryl Bromides. ACS Catal. 2016, 6, 5962. (d) Ghosh,
I.; König, B. Chromoselective Photocatalysis: Controlled Bond Activation
through Light-Color Regulation of Redox Potentials. Angew. Chem., Int. Ed.
2016, 55, 7676. (e) Marzo, L.; Ghosh, I.; Esteban, F.; König, B. Metal-Free
Photocatalyzed Cross Coupling of Bromoheteroarenes with Pyrroles. ACS
Catal. 2016, 6, 6780. (f) Senaweera, S.; Weaver, J. D. Dual C–F, C–H Func-
tionalization via Photocatalysis: Access to Multifluorinated Biaryls. J. Am.
Chem. Soc. 2016, 138, 2520. (g) Ghosh, I.; Shaikh, R. S.; König, B., Sensi-
tization-Initiated Electron Transfer for Photoredox Catalysis. Angew.
Chem., Int. Ed. 2017, 56, 8544. (h) Jiang, M.; Li, H.; Yang, H.; Fu, H.,
Room-Temperature Arylation of Thiols: Breakthrough with Aryl Chlorides.
Angew. Chem. Int. Ed. 2017, 56, 874. (i) Liu, B.; Lim, C. H.; Miyake, G.
M., Visible-Light-Promoted C-S Cross-Coupling via Intermolecular
Charge Transfer. J. Am. Chem. Soc. 2017, 139, 13616. (j) Cheng, Y.; Muck-
Lichtenfeld, C.; Studer, A. Metal-Free Radical Borylation of Alkyl and Aryl
Iodides. Angew. Chem., Int. Ed. 2018, 57, 16832. (k) Zeng, H.; Dou, Q.; Li,
C.-J. Photoinduced Transition-Metal-Free Cross-Coupling of Aryl Halides
with H-Phosphonates. Org. Lett. 2019, 21, 1301. (l) Zhang, L.; Jiao, L.,
Visible-Light-Induced Organocatalytic Borylation of Aryl Chlorides. J. Am.
Chem. Soc. 2019, 141, 9124. (m) Constantin, T.; Zanini, M.; Regni, A.;
Sheikh, N. S.; Julia, F.; Leonori, D., Aminoalkyl radicals as halogen-atom
transfer agents for activation of alkyl and aryl halides. Science 2020, 367,
1021. (n) Jin, S.; Dang, H. T.; Haug, G. C.; He, R.; Nguyen, V. D.; Nguyen,
V. T.; Arman, H. D.; Schanze, K. S.; Larionov, O. V., Visible Light-Induced
Borylation of C-O, C-N, and C-X Bonds. J. Am. Chem. Soc. 2020, 142,
1603. (o) Kim, H.; Kim, H.; Lambert, T. H.; Lin, S., Reductive Electropho-
tocatalysis: Merging Electricity and Light To Achieve Extreme Reduction
Potentials. J. Am. Chem. Soc. 2020, 142, 2087. (p) Cowper, N. G. W.; Cher-
nowsky, C. P.; Williams, O. P.; Wickens, Z. K., Potent Reductants via Elec-
tron-Primed Photoredox Catalysis: Unlocking Aryl Chlorides for Radical
Coupling. J. Am. Chem. Soc. 2020, 142, 2093.
(11) (a) Yatham, V. R.; Shen, Y.; Martin, R. Catalytic Intermolecular Di-
carbofunctionalization of Styrenes with CO2 and Radical Precursors. Angew.
Chem., Int. Ed. 2017, 56, 10915. (b) Ye, J.-H.; Miao, M.; Huang, H.; Yan,
S.-S.; Yin, Z.-B.; Zhou, W.-J.; Yu, D.-G. Visible-Light-Driven Iron-Pro-
moted Thiocarboxylation of Styrenes and Acrylates with CO2. Angew.
Chem., Int. Ed. 2017, 56, 15416. (c) Hou, J.; Ee, A.; Cao, H.; Ong, H.-W.;
Xu, J.-H.; Wu, J. Visible-Light-Mediated Metal-Free Difunctionalization of
Alkenes with CO2 and Silanes or C(sp3)-H Alkanes. Angew. Chem., Int. Ed.
2018, 57, 17220. (d) Fu, Q.; Bo, Z.-Y.; Ye, J.-H.; Ju, T.; Huang, H.; Liao,
L.-L.; Yu, D.-G. Transition Metal-Free Phosphonocarboxylation of Al-
kenes with Carbon Dioxide Via Visible-Light Photoredox Catalysis. Nat.
Commun. 2019, 10, 3592.
(12) For reviews on photocatalytic utilization of CO2: (a) Gui, Y.-Y.; Zhou,
W.-J.; Ye, J.-H.; Yu, D.-G. Photochemical Carboxylation of Activated
C(sp3)-H Bonds with CO2. ChemSusChem 2017, 10, 1337. (b) Cao, Y.; He,
X.; Wang, N.; Li, H.-R.; He, L.-N. Photochemical and Electrochemical Car-
bon Dioxide Utilization with Organic Compounds. Chinese Journal of
Chemistry 2018, 36, 644. (c) Tan, F.; Yin, G. Homogeneous Light-Driven
Catalytic Direct Carboxylation with CO2. Chin. J. Chem. 2018, 36, 545. (d)
Hou, J.; Li, J.-S.; Wu, J. Recent Development of Light-Mediated Carboxy-
lation Using CO2 as the Feedstock. Asian J. Org. Chem. 2018, 7, 1439. (e)
Yeung, C. S. Photoredox Catalysis as a Strategy for CO2 Incorporation: Di-
rect Access to Carboxylic Acids from a Renewable Feedstock. Angew.
Chem., Int. Ed. 2019, 58, 5492.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(15) (a) Cao, P.; Long, Z.-Y.; Chen, Q.-Y. Photoinduced Electron-transfer
Reaction of Pentafluoroiodobenzene with Alkenes. Molecules 1997, 2, 11.
(b) Fagnoni, M.; Mella, M.; Albini, A., Smooth Synthesis of Aryl- and Al-
kylanilines by Photoheterolysis of Haloanilines in the Presence of Aromat-
ics and Alkenes. Org. Lett. 1999, 1, 1299. (c) Senboku, H.; Komatsu, H.;
Fujimura, Y.; Tokuda, M. Efficient Electrochemical Dicarboxylation of
Phenyl-substituted Alkenes: Synthesis of 1-Phenylalkane-1,2-dicarboxylic
Acids. Synlett 2001, 2001, 0418. (d) Yuan, G.-Q.; Jiang, H.-F.; Lin, C.; Liao,
S.-J. Efficient Electrochemical Synthesis of 2-Arylsuccinic Acids from CO2
and Aryl-Substituted Alkenes with Nickel as the Cathode. Electrochim.
Acta 2008, 53, 2170. (e) Senboku, H.; Michinishi, J.-y.; Hara, S., Facile
Synthesis of 2,3-Dihydrobenzofuran-3-ylacetic Acids by Novel Electro-
chemical Sequential Aryl Radical Cyclization-Carboxylation of 2-Al-
lyloxybromobenzenes Using Methyl 4-tert-Butylbenzoate as an Electron-
Transfer Mediator. Synlett 2011, 2011, 1567. (f) Shao, P.; Wang, S.; Chen,
C.; Xi, C. Zirconocene-Catalyzed Sequential Ethylcarboxylation of Al-
kenes Using Ethylmagnesium Chloride and Carbon Dioxide. Chem. Com-
mun. 2015, 51, 6640. (g) Butcher, T. W.; McClain, E. J.; Hamilton, T. G.;
Perrone, T. M.; Kroner, K. M.; Donohoe, G. C.; Akhmedov, N. G.; Petersen,
J. L.; Popp, B. V. Regioselective Copper-Catalyzed Boracarboxylation of
Vinyl Arenes. Org. Lett. 2016, 18, 6428. (h Yoo, W. J.; Kondo, J.; Rodri-
guez-Santamaria, J. A.; Nguyen, T. V. Q.; Kobayashi, S. Efficient Synthesis
of α-Trifluoromethyl Carboxylic Acids and Esters through Fluorocarboxy-
lation of gem-Difluoroalkenes. Angew. Chem., Int. Ed. 2019, 58, 6772. (i)
Hang, W.; Zou, S.; Xi, C. Titanocene-Catalyzed Sequential Carbocarboxy-
lation of Dienes and Alkenes with Organic Halides and Carbon Dioxide in
the Presence of nBuMgCl. ChemCatChem 2019, 11, 3814.
(13) For photocatalytic hydrocarboxylation with CO2: (a) Ito, Y. Catalytic
Photocarboxylation of 1,1-Diphenylethylene with N,N,N′,N′-Tetra-
methylbenzidine and Carbon Dioxide. Tetrahedron 2007, 63, 3108. (b) Mu-
rata, K.; Numasawa, N.; Shimomaki, K.; Takaya, J.; Iwasawa, N. Construc-
tion of a Visible Light-Driven Hydrocarboxylation Cycle of Alkenes by the
(16) (a) Tominaga, K.-i.; Sasaki, Y. Ruthenium Complex-Catalyzed Hy-
droformylation of Alkenes with Carbon Dioxide. Catal. Commun. 2000, 1,
1. (b) Williams, C. M.; Johnson, J. B.; Rovis, T. Nickel-Catalyzed Reduc-
tive Carboxylation of Styrenes Using CO2. J. Am. Chem. Soc. 2008, 130,
14936. (c) Ohishi, T.; Zhang, L.; Nishiura, M.; Hou, Z. Carboxylation of
ACS Paragon Plus Environment