I. N. Bardasov et al. / Tetrahedron Letters 52 (2011) 4724–4725
4725
CN
CN
CN
CN
H2N
N
NC
NC
O
NH2 + SCN-
N
NH2
NH2
CN
O
O
S
S
CN
CN
S
CN
CN
O
H
O
H
H
CN
Ar
CN
Ar
6
Ar
4
Ar
1
- CN-
H2N
5
CN
CN
CN
H
H
CN
H2N
NC
HO
NC
N
N
N
- CN-
N
O
S
S
CN
- HCN
CN
CN
HO
S
CN
H
S
H
H
Ar
2
Ar
Ar
Ar
8
7
9
Scheme 2. Proposed mechanism for the synthesis of isothiazoles 2a–e.
Abd Allah, S. O.; Mohareb, R. M. Synthesis 1984, 976–978; (d) Junek, H.;
Thierrichter, B.; Wibmer, P. Monatsh. Chem. 1979, 110, 483–492; (e) Junek, H.;
Wolny, B. Monatsh. Chem. 1976, 107, 999–1006.
ments made on the basis of the mass spectra of compounds 2 dis-
played molecular ion peaks and other fragmentations, including
peaks due to [Ar–C„S+] fragments.
4. (a) Kuzuya, M.; Yamauchi, Y.; Niwa, J.; Kondo, S.; Sakai, Y. Chem. Pharm. Bull.
1995, 43, 2037–2041; (b) Singer, J. M.; Barr, B. M.; Coughenour, L. L.; Gregory, T.
F.; Walters, M. A. Bioorg. Med. Chem. Lett. 2005, 15, 4560–4563; (c) Cipollina, J.
A.; Ruediger, E. H.; New, J. S.; Wire, M. E.; Shepherd, T. A.; Smith, D. W.; Yevich, J.
P. J. Med. Chem. 1991, 34, 3316–3328; (d) Yevich, J. P.; New, J. S.; Smith, D. W.;
Lobeck, W. G.; Catt, J. D.; Minielli, J. L.; Eison, M. S.; Taylor, D. P.; Riblet, L. A.;
Temple, D. L., Jr. J. Med. Chem. 1986, 29, 359–369; (e) Raap, R.; Micetich, R. G. J.
Med. Chem. 1968, 11, 70–73; (f) Swayze, E. E.; Drach, J. C.; Wotring, L. L.;
Townsend, L. B. J. Med. Chem. 1997, 40, 771–784; (g) Lipnicka, U.; Regiec, A.;
Machon, Z. Pharmazie 1994, 49, 642–646.
5. (a) Kirrbakh, S.; Mjutche, K.; Kempe, R.; Meiisinger, R.; Kolberg, A.; Shulche, B.
Zh. Org. Khim. 1996, 32, 1745–1753; (b) Schulze, B.; Kirsten, G.; Kirrbach, S.;
Rahm, A.; Heimgartner, H. Helv. Chim. Acta 1991, 74, 1059–1070; (c) Schulze, B.;
Rosenbaum, K.; Hilbig, J.; Weber, L. J. Prakt. Chem. 1992, 334, 25–33; (d) Schulze,
B.; Herre, S.; Braemer, S.; Laux, C.; Muehlstaedt, M. J. Prakt. Chem. 1977, 319,
305–312; (e) Schulze, B.; Hilbig, J.; Weber, L.; Rosenbaum, K.; Muhlstadt, M. Z.
Chem. 1988, 28, 287–288.
According to published data, ring-opening of oxiranes under the
action of thiocyanates can lead to the formation of 2-imino-1,3-
oxathiolanes 3.7 Depending on the structures of the reactants
and the reaction conditions, derivatives of various classes of het-
erocycles, such as thiiranes, 1,3-oxathiolanes and thiazoles can
be formed. The structures of the final products 2 and the proposed
mechanism for this transformation do not require formation of 3 as
an intermediate in the reaction of oxiranes 1 with thiocyanates.
Ring-opening of an oxirane ring can occur stereospecifically via
approach of a nucleophile from the rear of the C–O7 bond by an SN2
mechanism. Therefore, during the first stage we assume initial for-
mation of intermediate 4 (Scheme 2).
This intermediate undergoes intramolecular heterocyclization
with the formation of iminofuran 5, subsequent tautomerization
of which gives intermediate 6. The proximity of the imine anion
and thiocyanate group leads to formation of an isothiazole ring
accompanied by the elimination of a cyanide anion and the forma-
tion of intermediate 9.
An alternative reaction course is also possible. This involves the
formation of the isothiazole ring 8 after tautomerization of 4 into
intermediate 7. Further, intramolecular cyclization leads to forma-
tion of bicycle 9. Finally, aromatization occurs via elimination of
hydrogen cyanide.
In earlier published work the only method for the synthesis
furo[3,2-c]isothiazoles and benzofuro[3,2-c]isothiazoles involved
intramolecular nucleophilic replacement with the participation of
azido- and thione groups.8 Thus, the proposed method is the first
approach for the synthesis of polyfunctional furo[3,2-c]isothiazoles.
6. Typical procedure for the preparation of 5-amino-3-arylfuro[3,2-c]isothiazole-6-
carbonitriles 2a–e. NaSCN (0.81 g, 10 mmol) was dissolved in a solution of 2-
[amino(2-cyano-3-phenyloxiran-2-yl)methylene]malononitrile
1a
(2.36 g,
10 mmol) in a mixture of 1,4-dioxane (20 mL) and H2O (20 mL). The mixture
was stirred at 70 °C for 1 h, cooled filtered and washed with 1,4-dioxane (20 mL)
and H2O (20 mL). Compound 2a: mp 285–286 °C; 1H NMR (500.13 MHz, DMSO-
d6): d 7.48 (1H, t, J = 7.3 Hz, C6H5), 7.55 (2H, t, J = 7.5 Hz, C6H5), 7.64 (2H, d,
J = 7.7 Hz, C6H5), 9.04 (2H, s, NH2). 13C NMR (125.76 MHz, DMSO-d6): d 59.41
(C6), 113.65 (CN), 126.32, 127.42, 129.41, 129.52 (C6H5), 135.29 (C3), 138.59
(C3a), 160.36 (C6a), 175.13 (C5). IR 3334, 3258 (NH2), 2224 (C„N). MS (EI, 70 eV):
m/z (%) 241 (M+, 42), 121 ([Ar–C„S+], 100). Anal. Calcd for C12H7N3OS: C, 59.74;
H, 2.92; N, 17.42. Found C, 59.77; H, 3.03; N, 17.50. Compound 2b: mp 240–
241 °C; 1H NMR (500.13 MHz, DMSO-d6): d 7.50–7.57 (2H, m, C6H4), 7.70 (1H,
dd, 3J = 7.7 Hz, 4J = 1.6 Hz, C6H4), 7.91 (1H, dd, 3J = 7.5 Hz, 4J = 2.0 Hz, C6H4), 9.05
(2H, s, NH2). IR 3328, 3267 (NH2), 2226 (C„N). MS (EI, 70 eV): m/z (%) 277 (M+
37Cl, 24), 275 (M+ 35Cl, 78), 157 ([Ar–C„S+], 34), 155 ([Ar–C„S+], 100). Anal.
Calcd for C12H6ClN3OS: C, 52.27; H, 2.19; N, 15.24. Found C, 52.32; H, 2.22; N,
15.30. Compound 2c: mp 181–182 °C; 1H NMR (500.13 MHz, DMSO-d6): d 2.36
(3H, s, CH3), 7.35 (2H, d, J = 8.1 Hz, C6H4), 7.53 (2H, d, J = 8.2 Hz, C6H4), 9.02 (2H,
s, NH2). IR 3333, 3262 (NH2), 2226 (C„N). MS (EI, 70 eV): m/z (%) 255 (M+, 68),
135 ([Ar–C„S+], 100). Anal. Calcd for C13H9N3OS: C, 61.16; H, 3.55; N, 16.46.
Found C, 61.22; H, 3.57; N, 16.51. Compound 2d: mp 214–215 °C; 1H NMR
(500.13 MHz, DMSO-d6): d 7.39–7.43 (2H, m, C6H4), 7.67–7.70 (2H, m, C6H4),
9.07 (2H, s, NH2). IR 3336, 3257 (NH2), 2224 (C„N). MS (EI, 70 eV): m/z (%) 259
(M+, 36), 139 ([Ar–C„S+], 100). Anal. Calcd for C12H6FN3OS: C, 55.59; H, 2.33; N,
16.21. Found C, 56.08; H, 2.47; N, 16.02. Compound 2e: mp 265–266 °C; 1H NMR
(500.13 MHz, DMSO-d6): d 7.53–7.58 (2H, m, C6H4), 7.68 (2H, s, C6H4), 9.12 (2H,
s, NH2). IR 3326, 3256 (NH2), 2233 (C„N). MS (EI, 70 eV): m/z (%) 277 (M+ 37Cl,
27), 275 (M+ 35Cl, 80), 157 ([Ar–C„S+], 37), 155 ([Ar–C„S+], 100). Anal. Calcd for
Acknowledgment
This research was supported by the Federal Target Program
Research and educational personnel of innovative Russia as
research project (No. 16.740.11.0160).
C
12H6ClN3OS: C, 52.27; H, 2.19; N, 15.24. Found C, 52.39; H, 2.33; N, 15.23.
7. (a) Kleiner, C. M.; Horst, L.; Würtele, C.; Wende, R.; Schreiner, P. R. Org. Biomol.
Chem. 2009, 7, 1397–1403; (b) Vasil’eva, S. A.; Kashina, Y. A.; Kulikova, M. V.;
Zemtsova, M. N.; Safarov, M. G. Chem. Heterocycl. Comp. 1992, 28, 868–871; (c)
Castilla, J.; Marin, I.; Matheu, M. I.; Diaz, Y.; Castillon, S. J. Org. Chem. 2010, 75,
514–517; (d) Majcen, A.; Marechal, L.; Robert, A.; Leban, I. J. Chem. Soc., Perkin
Trans. 1 1993, 351–356; (e) Baudy, M.; Robert, A.; Foucaud, A. J. Org. Chem. 1978,
43, 3732–3736.
8. (a) Degl’Innocenti, A.; Funicello, M.; Scafato, P.; Spagnolo, P. Chem. Lett. 1994,
1873–1876; (b) Capperucci, A.; Degl’Innocenti, A.; Funicello, M.; Scafato, P.;
Spagnolo, P. Phosphorus, Sulfur Silicon Relat. Elem. 1994, 96, 479–480; (c)
Capperucci, A.; Degl’Innocenti, A.; Scafato, P.; Spagnolo, P. Chem. Lett. 1995, 147–
148.
References and notes
1. (a) Kuban, V.; Janak, J. Chemicke Listy 1969, 63, 639–678; (b) Zefirov, N. S.;
Makhon’kov, D. I. Russ. Chem. Rev. 1980, 49, 337–356; (c) Fatiadi, A. J. Synthesis
1986, 249–284; (d) Fatiadi, A. J. Synthesis 1987, 749–789; (e) Freeman, F.
Synthesis 1987, 925–954; (f) Sharanin, Yu. A.; Goncharenko, M. P.; Litvinov, V. P.
Russ. Chem. Rev. 1998, 67, 393–422; (g) Fatiadi, A. J. Synthesis 1978, 165–204; (h)
Fatiadi, A. J. Synthesis 1978, 241–282.
2. Golubev, R. V.; Belikov, M. Yu.; Bardasov, I. N.; Ershov, O. V.; Nasakin, O. E. Russ. J.
Org. Chem. 2010, 46, 1883–1884.
3. (a) Gazit, A.; Yaish, P.; Gilon, C.; Levitzki, A. J. Med. Chem. 1989, 32, 2344–2352;
(b) Boila-Goeckel, A.; Junek, H. J. Prakt. Chem. 1999, 341, 20–28; (c) Fahmy, S. M.;