A. Kumar et al. / Tetrahedron Letters 52 (2011) 4835–4839
14. Bethiel, R.S.; Ludeboer, M. U.S. Patent Appl. US 2004097504 A1, 2004.
4839
It has already been reported earlier that with the increasing
number of reaction cycles, the catalytic activity of the copper nano-
particles decreases.24 This might be due to the slow oxidation of
the copper nanoparticles in different organic media. It can there-
fore be said that PEG not only acts as a green and environmentally
benign reaction media but also provides stability to the nanoparti-
cles from being oxidized. Nanoparticles could be recovered by sep-
arating them from the reaction mixture by mild centrifugation.
In conclusion, it can be said that a simple, eco-friendly, green
and efficient procedure for the synthesis of naphthalene condensed
oxazinone derivatives from diverse carbonyl compounds (alde-
hydes) with urea is reported for the first time by our research
group using inexpensive, easily recyclable, monodispersed copper
nanoparticles as catalysts in biocompatible, economical and reus-
able, PEG-400. The method is very efficient and avoids the use of
expensive reagents, high temperatures and leads to improved
product yields. To the best our knowledge, this is the first report
on copper nanoparticles catalyzed synthesis of naphthaoxazinone
derivatives in reusable PEG-400 and this new procedure opens
an important chapter in the efficient recyclability of copper nano-
particles as an important catalyst. The ambient conditions, high
reaction rates, excellent product yields and easy work-up proce-
dures at room temperature not only makes this methodology an
alternative platform to the conventional acid/base catalyzed
thermal process but also brings it under the umbrella of environ-
mentally greener and safer synthetic procedures. Additional appli-
cations of this technique are currently under investigation.
15. Caliendo, G.; Perissutti, E.; Santagada, V.; Ferdinando, F.; Severino, B.;
d’Emmanuele di Villa Bianca, R.; Lippolis, L.; Pinto, A.; Sorrentini, R. Bioorg.
Med. Chem. 2002, 10, 2663.
16. Fringuelli, R.; Pietrella, D.; Schiaffella, F.; Guarraci, A.; Perito, S.; Bistoni, F.;
Vecchiarelli, A. Bioorg. Med. Chem. 2002, 10, 1681.
17. Wang, Y.; Li, X.; Ding, K. Tetrahedron: Asymmetry 2002, 13, 1291.
18. Austin, J. F.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 7, 1172.
19. Triggle, D. J. Mini-ReV. Med. Chem. 2003, 3, 215.
20. Chaskar, A.; Vyahare, V.; Padalkar, V.; Phatangare, K.; Deokar, H. J. Serb. Chem.
Soc. 2011, 76, 21.
21. Dabiri, M.; Delbari, A. S.; Bazgir, A. Synlett 2007, 0821.
22. Nizam, A.; Päsha, M. A. Synthetic Communications 2010, 40, 2864.
23. Khavasi, H. R.; Bazgir, A.; Amani, V.; Rahimi, R. Journal of Chemical Research
2008, 450.
24. Kumar, A.; Singh, P.; Saxena, A.; De, A.; Chandra, R.; Mozumdar, S. Catalysis
Communications 2008, 10, 17.
25. Kidwai, M.; Mishra, N. K.; Bansal, V.; Kumar, A.; Mozumdar, S. Tetrahedron Lett.
2009, 50, 1355.
26. Kidwai, M.; Mishra, N. K.; Bansal, V.; Kumar, A.; Mozumdar, S. Tetrahedron Lett.
2007, 48, 8883.
27. Kidwai, M.; Mishra, N. K.; Bansal, V.; Kumar, A.; Mozumdar, S. Catalysis
Communications 2009, 10, 1514.
28. Ruparelia, J. P.; Chatterjee, A. K.; Duttagupta, S. P.; Mukherji, S. Acta
Biomaterialia 2008, 4, 707.
29. Yoon, K. Y.; Byeon, J. H.; Park, J. H.; Hwang, J. Science of the Total Environment
2007, 373, 572.
30. Kumar, R.; Chaudhary, P.; Nimesh, S.; Chandra, R. Green Chem. 2006, 8, 356.
31. Chandrasekhar, S.; Narsihmulu, C.; Reddy, N. R.; Sultana, S. S. Tetrahedron Lett.
2004, 45, 4581.
32. Ahn, J. M.; Wentworth, P., Jr.; Janda, K. D. Chem. Commun. 2003, 480.
33. Dickerson, T. J.; Reed, N. N.; Janda, K. D. Chem. Rev. 2002, 102, 3325.
34. Typical procedure for the copper nanoparticles catalyzed 1,3-oxazin-3-ones
derivatives.
To a mixture of benzaldehyde (2 mmol), urea (3 mmol) and K2CO3 (0.3 mmol)
in PEG-400 (3 mL) copper-nanoparticles (15 nm; 0.001 g) were added, finely
mixed together and allowed to stir for 5 min at room temperature and then b-
naphthol (2 mmol) was added. The resulting reaction mixture was stirred at
room temperature for a specified period (Table 1). The progress of the reaction
was monitored by thin layer chromatography (TLC). After the completion of
the reaction, as indicated by TLC the reaction mixture was centrifuged
(5000 rpm, 7 min) to pellet out the copper nanoparticles. The particles were
then washed with absolute PEG to remove all the organic impurities. These
particles were reused for evaluating the performance in the next reaction. The
organic PEG layer containing reaction mixture was extracted with dry diethyl
ether as PEG is insoluble in ether. The ethereal layer was decanted, dried,
concentrated under reduced pressure and then the product so obtained was
recrystallized from hexane-EtOAc (3:1) to afford the pure product in >90%
yields (Table 1). The recovered PEG and copper nanoparticles were reused for
consecutive runs to evaluate the scope of recyclability of the reaction.
Structural assignments of the products are based on their 1H NMR, 13C NMR,
FT-IR and Mass analysis. The analysis of complete spectral and compositional
data revealed the formation of Naphthaoxazinone products with excellent
purity.
Acknowledgments
S.M. and A.K. acknowledge the financial support from the
Department of Science & Technology (DST) and Council of Scien-
tific Industrial Research (CSIR), Government of India, respectively.
Supplementary data
Supplementary data (procedural details of synthesis of copper
nanoparticles and its characterization data) associated with this
article can be found, in the online version, at doi:10.1016/
Characterization data of some important Compounds:
References and notes
1-Phenyl-1,2-dihydro-naphtho[1,2-e][1,3]oxazin-3-one (Table 1 entry;1)
White Powder, MP = 217–219 °C; IR (KBr)
m .
max: 3293, 1730, 1519 cmꢀ1 1H
1. Waxman, L.; Darke, P. L. Antiviral Chem. Chemother. 2000, 11, 1.
2. Kalluraya, B.; Sreenivasa, S. Farmaco 1998, 53, 399.
3. Larsen, R. D.; Corley, E. G.; King, A. O.; Carrol, J. D.; Davis, P.; Verhoeven, T. R.;
Reider, P. J.; Labelle, M.; Gauthier, J. Y.; Xiang, Y. B.; Zamboni, R. J. J. Org. Chem.
1996, 61, 3398.
4. Maguire, M. P.; Sheets, K. R.; McVety, K.; Spada, A. P.; Zilberstein, A. J. Med.
Chem. 1994, 37, 2129.
5. Chen, Y. L.; Fang, K. C.; Shen, J. Y.; Hsu, S. L.; Tzeng, C. C. J. Med. Chem. 2001, 44,
2374.
6. Doube, D.; Blouin, M.; Brideau, C.; Chan, C.; Desmarais, S.; Eithier, D.;
Falgueyret, J. P.; Friesen, R. W.; Girrard, M.; Girard, Y.; Guay, J.; Tagari, P.;
Young, R. N. Bioorg. Med. Chem. Lett. 1998, 8, 1255.
7. Dougherty, K. J.; Bannatyne, B. A.; Jankowska, E.; Krutki, P.; Maxwell, D. J. J.
Neurosci. 2005, 3, 584.
8. Iwahashi, M.; Kobayashi, K.; Nambu, F. Int. Patent Appl. WO 2003078409 A1,
2003.
9. Vianello, P.; Bandiera, T. U.S. Patent Appl. US 2003073688A1, 2003.
10. Anderlub, M.; Cesar, J.; Stefanic, P.; Kikelj, D.; Janes, D.; Murn, J.; Nadrah, K.;
Tominc, M.; Addicks, E.; Giannis, A.; Stegnar, M.; Dolenc, M. S. Eur. J. Med. Chem.
2005, 125.
NMR (300 MHz, DMSO-d6): d = 6.19 (d, J = 2.1 Hz, 1H, CH), 7.24–8.00 (m, 11H,
Ar–H), 8.83 (br s, 1H, NH); 13C NMR (75 MHz, DMSO-d6): d = 54.20, 114.50,
117.32, 123.57, 125.54, 127.42, 127.81, 128.47,129.08, 129.32, 129.41, 130.68,
130.86, 143.34, 147.85, 149.77, Mass (M++H) = 275.041.
1-(4-Fluro-Phenyl)-1,2-dihydro-naphtho[1,2-e][1,3]oxazin-3-one (Table
1
entry; 6)
Light Brown, MP = 202–204 °C; IR (KBr) m .
max: 3233, 3149, 1731 cmꢀ1 1H NMR
(300 MHz, DMSO-d6): d = 6.22 (s, 1H, CH), 7.33–8.03 (m, 10H, Ar–H), 8.92(s,
1H, NH); 13C NMR (75 MHz, DMSO-d6): d = 53.47, 114.06, 117.31, 123.50,
125.62, 127.91, 128.06, 129.17, 129.29, 129.37, 129.41, 130.89, 133.05, 142.24,
147.90, 149.62; Mass (M++H) = 294.087.
1-(4-Chloro-Phenyl)-1,2-dihydro-naphtho[1,2-e][1,3]oxazin-3-one (Table 1
entry; 7)
White Powder, MP = 205–207 °C; IR (KBr)
m .
max: 3223, 3144, 1732 cmꢀ1 1H
NMR (300 MHz, DMSO-d6): d = 6.24 (s, 1H, CH), 7.31–8.01 (m, 10H, Ar–H), 8.91
(s, 1H, NH); 13C NMR (75 MHz, DMSO-d6): d = 53.46, 114.05, 117.31, 123.50,
125.62, 127.92, 128.06, 129.13, 129.21, 129.37, 129.42, 130.89, 133.06, 142.25,
147.90, 149.64; Mass (M++H) = 311.057.
1-(4-Bromo-Phenyl)-1,2-dihydro-naphtho[1,2-e][1,3]oxazin-3-one (Table 1
entry; 8)
11. Kajino, N.; Shibouta, Y.; Nishikawa, K.; Meguro, K. Chem. Pharm. Bull. 1991, 11,
2896.
12. Gellibert, F. J.; Payne, A. Int. Patent Appl. WO 2003097639 A1, 2003.
13. Nicolaides, D. N.; Gautam, D. R.; Litinas, K. E.; Kikelj, D.; Janes, D.; Murn, J.;
Nadrah, K.; Tominc, M.; Addicks, E.; Giannis, A.; Stegnar, M.; Dolenc, M. S. J.
Heterocycl. Chem. 2004, 4, 605.
Off White Powder, MP = 218–219 °C; IR (KBr) m .
max: 3223, 3144, 1732 cmꢀ1 1H
NMR (300 MHz, DMSO-d6): d = 6.21(s, 1H, CH), 7.31–8.01 (m, 10H, Ar–H), 8.94
(s, 1H, NH); 13C NMR (75 MHz, DMSO-d6): d = 53.44, 113.01, 117.29,122.51,
125.67, 127.91, 128.06, 129.13, 129.20, 129.35, 129.41, 130.89, 133.06, 142.23,
147.91, 149.64; Mass (M++H)=355.055.