C. Schenk, R. Köppe, H. Schnöckel, A. Schnepf
SHORT COMMUNICATION
[9]
T. Caldenbach, T. Bollermann, C. Gemel, R. A. Fischer, Dalton
Trans. 2009, 322–329.
D. Loos, E. Baum, A. Ecker, H. Schnöckel, A. J. Downs, An-
gew. Chem. 1997, 109, 894–895; Angew. Chem. Int. Ed. Engl.
1997, 36, 860–862.
A. Haaland, L. G. Martinsen, H. V. Volden, D. Loos, H.
Schnöckel, Acta Chem. Scand. 1994, 48, 172–174.
P. Jutzi, B. Neumann, G. Reumann, H.-G. Stammler, Organo-
metallics 1998, 17, 1305–1314.
298 K): ν = 443.6 (w), 472.5 (w), 559.3 (w), 615.3 (w), 655.8 (sh),
˜
661.5 (m), 692.4 (w), 731.0 (w), 771.5 (m), 825.5 (m), 960.5 (s),
979.8 (s), 1008.7 (w), 1087.8 (sh), 1103.3 (m), 1284.6 (w), 1375.2
(w), 1460 (m), 1516.0 (m), 1645.2 (w) cm–1.
[10]
Crystal Structure Data
[11]
[12]
[13]
[14]
CpGaǞGaCp2I (2): IGa2C15H15 Mr = 461.6 gmol–1, crystal dimen-
sions 0.4ϫ0.3ϫ0.3 mm3, orthorhombic, space group Pca21, a =
16.176(3) Å, b = 8.5188(17) Å, c = 11.319(2) Å, V = 1559.9(5) Å3,
Z = 4, ρcalcd = 1.966 g cm–3, μMo = 5.414 mm–1, 2θmax = 54.26°,
9155 measured, 1743 independent reflections (Rint = 0.0689); ab-
sorption correction: numerical (min./max. transmission 0.4143/
0.5381), R1 = 0.0313, wR2 = 0.0553; STOE IPDS II diffractometer
[Mo-Kα radiation (λ = 0.71073 Å), 150 K].
P. Jutzi, L. O. Schebaum, J. Organomet. Chem. 2002, 654, 176–
179.
M. L. H. Green, P. Mounford, G. J. Smout, S. R. Speel, Polyhe-
dron 1990, 9, 2763–2765.
R. J. Baker, C. Jones, Dalton Trans. 2005, 1341–1348.
C. Gemel, T. Steinke, M. Cokoja, A. Kempter, R. A. Fischer,
Eur. J. Inorg. Chem. 2004, 4161–4176.
The interaction of Ga and Cp in the multidecker sandwich
[-Ga(C5H5)Fe(C5H5)-]n[GaCl4]2n complex is rather weak and
the distance is very long relative to known GaCp* compounds:
S. Scholz, J. C. Green, H. Lerner, M. Bolte, M. Wagner, Chem.
Commun. 2002, 36–37.
D. Loos, H. Schnöckel, J. Gauss, U. Schneider, Angew. Chem.
1992, 104, 1376–1378; Angew. Chem. Int. Ed. Engl. 1992, 31,
1362–1364.
[15]
[16]
CpGaǞB(C6F5)3 (4): GaF15C23BH5 Mr = 646.8 gmol–1, crystal di-
mensions 0.3ϫ0.25ϫ0.2 mm3, monoclinic, space group C2/c, a =
18.288(4) Å, b = 12.382(3) Å, c = 20.547(4) Å, β = 108.96(3)°, V =
4400.3(15) Å3, Z = 8, ρcalcd = 1.953 gcm–3, μMo = 1.390 mm–1,
2θmax = 53.48°, 11093 measured, 4649 independent reflections (Rint
= 0.0770); absorption correction: numerical (min./max. trans-
mission 0.8244/0.9006), R1 = 0.0394, wR2 = 0.0974; STOE IPDS
II diffractometer [Mo-Kα radiation (λ = 0.71073 Å), 150 K]. The
structures were solved by direct methods and refined against F2 for
all observed reflections. Programs used: SHELXS and
SHELXL.[32]
[17]
[18]
[19]
[20]
The stretching vibration for GaCp (1) has been calculated to
be 262.3 cm–1 in the Raman spectra (C1 symmetry).
Quantum chemical calculations were carried out with the RI-
DFT module of the Turbomole program package by employing
the Becke–Perdew 86-functional. The basis sets were of SVP
quality. Turbomole: O. Treutler, R. Ahlrichs, J. Chem. Phys.
1995, 102, 346–354; BP-86-functional: A. D. Becke, Phys. Rev.
A 1988, 38, 3098–3100; J. P. Perdew, Phys. Rev. B 1986, 33,
8822–8824; RI-DFT: K. Eichkorn, O. Treutler, H. Öhm, M.
Häser, R. Ahlrichs, Chem. Phys. Lett. 1995, 240, 283–290; SVP:
A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 1992, 97,
2571–2577.
CCDC-822364 (for 2) and -822363 (for 4) contain the supplemen-
tary crystallographic data for this paper. These data can be ob-
tained free of charge from the Cambridge Crystallographic Data
Centre via www.ccdc.cam.as.uk/data_request/cif.
Supporting Information (see footnote on the first page of this arti-
cle): EDX, IR and Raman spectra.
III
[21]
The presence of the Ga moiety (Cp2GaI) in 2 seems surpris-
Acknowledgments
ing at first glance. However, the formation of GaIII compounds
by applying “GaI” has been described before, for example, the
reaction of “GaI” with PPh3 gives Ph3PǞGaI3.[15] Probably,
two iodine atoms of a GaI3 intermediate were substituted by a
Cp ligand in a metathesis reaction, and the resulting GaCp2I
was trapped by GaCp to form crystals of 2. A further substitu-
tion of the third iodine would lead to the sterically crowded
GaCp3, which cannot easily get distorted to a tetrahedral ar-
rangement and can therefore hardly form donor–acceptor
bonds.
We are grateful to the Deutsche Forschungsgemeinschaft (DFG)
and the Fonds der Chemischen Industrie for financial support and
the Alexander von Humboldt Foundation for a Feodor Lynen fel-
lowship (C. S.). We also thank Jenny Luu for helpful discussions.
[1] C. Dohmeier, C. Robl, M. Tacke, H. Schnöckel, Angew. Chem.
1991, 103, 594–595; Angew. Chem. Int. Ed. Engl. 1991, 30, 564–
565.
[22]
A. H. Cowley, Chem. Commun. 2004, 2369–2375; S. Schulz, A.
Kuczkowksi, D. Schuchmann, U. Flörke, M. Nieger, Organo-
metallics 2006, 25, 5487–5491.
H. Schmidbaur, U. Thewalt, T. Zafiropoulos, Organometallics
1983, 2, 1550–1554.
[2] C. Elschenbroich, Organometallics, Third Completely Revised
and Extended Edition, Wiley-VCH, Weinheim, 2006, pp. 3–9.
[3] M. Tacke, H. Schnöckel, Inorg. Chem. 1989, 28, 2895–2896.
[4] C. Dohmeier, D. Loos, H. Schnöckel, Angew. Chem. 1996, 108,
141–161; Angew. Chem. Int. Ed. Engl. 1996, 35, 129–149.
[5] In recent years, these metastable solutions were especially ap-
plied for the synthesis of metalloid clusters of group 13, some
of which are giant, opening our eyes for fundamental processes
like the dissolution and formation of metals: H. Schnöckel,
Chem. Rev. 2010, 4125–4163.
[6] A. Haaland, K.-G. Martinsen, S. A. Shlykor, H. V. Volden, C.
Dohmeier, H. Schnöckel, Organometallics 1995, 14, 3116–3119.
[7] S. Schulz, H. W. Roesky, H. J. Koch, G. M. Sheldrick, D.
Stalke, A. Kuhn, Angew. Chem. 1993, 105, 1828–1830; Angew.
Chem. Int. Ed. Engl. 1993, 32, 1729–1731.
[8] C. Jones, A. Stasch in The Group 13 Metals Aluminium, Gal-
lium, Indium and Thallium, 1st ed. (Eds.: S. Aldridge, A. J.
Downs), Wiley-VCH, Weinheim, 2011, pp. 285–341; J. L. Krin-
sky, S. G. Minasian, J. Arnold, Inorg. Chem. 2011, 50, 345–
357; M. T. Gamer, P. W. Roesky, S. N. Konchenko, P. Nava, R.
Ahlrichs, Angew. Chem. 2006, 118, 4558–4561; Angew. Chem.
Int. Ed. 2006, 45, 4447–4451.
[23]
[24]
[25]
P. Jutzi, B. Neumann, G. Reumann, L. O. Schebaum, H.
Stammler, Organometallics 2001, 20, 2854–2858.
An EDX spectrum (EDX spectra are available in the Support-
ing Information) of the gray residue reveals an average gallium/
carbon ratio of 1:3.4, while the gallium/carbon ratio in 2 is
1:7.5 and the gallium/carbon ratio in GaCp3 is 1:15. Conse-
quently, the gray residue and GaCp3 are potential dispropor-
tionation products of 2.
[26]
[27]
N. J. Hardman, P. P. Power, J. D. Gordon, C. L. B. Macdonald,
A. H. Cowley, Chem. Commun. 2001, 1866–1867.
The sensitivity of the Ga–C bonding also becomes obvious in
the case of Cp*GaǞB(C6F5)3 (5), where a second solid-state
structure with a different packing of 5 is known, leading to a
B–Ga–Cpcentroid angle of 179.1° and Ga–C distances between
221 and 224 pm.[24]
.
[28]
M. C. Kuchta, J. B. Bonanno, G. Parkin, J. Am. Chem. Soc.
1996, 118, 10914–10915.
3684
www.eurjic.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2011, 3681–3685