LETTER
Synthesis of Two Diastereomers of Iriomoteolide-1a
1777
(4) For our three-module coupling approach in the synthesis of
butenoilde stereomers, see: (a) Dai, W.-M.; Shi, L.; Li, Y.
Tetrahedron: Asymmetry 2008, 19, 1549. (b) Wang, Y.;
Dai, W.-M. Tetrahedron 2010, 66, 187.
(5) For selected reviews on use of RCM in total synthesis, see:
(a) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem.
Int. Ed. 2005, 44, 4490. (b) Gradillas, A.; Pérez-Castells, J.
Angew. Chem. Int. Ed. 2006, 45, 6086. (c) Hoveyda, A. H.;
Malcolmson, S. J.; Meek, S. J.; Zhugralin, A. R. Angew.
Chem. Int. Ed. 2010, 49, 34.
(6) For our previous total synthesis using RCM strategy, see:
(a) Jin, J.; Chen, Y.; Wu, J.; Dai, W.-M. Org. Lett. 2007, 9,
2585. (b) Dai, W.-M.; Chen, Y.; Jin, J.; Wu, J.; Lou, J.; He,
Q. Synlett 2008, 1737. (c) Sun, L.; Feng, G.; Guan, Y.; Liu,
Y.; Wu, J.; Dai, W.-M. Synlett 2009, 2361. (d) Li, H.; Wu,
J.; Luo, J.; Dai, W.-M. Chem. Eur. J. 2010, 16, 11530.
(e) Wu, D.; Li, H.; Jin, J.; Wu, J.; Dai, W.-M. Synlett 2011,
895.
71% yield. As compared to the seco-substrate 17, the
RCM reaction of 22 required a longer reaction time (4 h
vs. 1.5 h), suggesting that the macrolide (2E,4S,5R)-23
should have higher ring strain than (2E,4R,5S)-20.
In summary, we have demonstrated that our tunable four-
module coupling approach provides an efficient access to
the 20-membered ring macrolide related to the proposed
structure of iriomoteolide-1a. Although our two synthe-
sized diastereomers (2E,4R,5S)-20 and (2E,4S,5R)-23 do
not match with the naturally occurring iriomoteolide-1a,
our work concurs with the early report2a for using RCM
reaction to construct the 20-membered ring macrolide
core with spontaneous formation of the 6E-double bond.
Moreover, the flexibility provided by our modular-cou-
pling strategy allows us accessing other diastereomers
from the 18R,19S-C7–C23 fragment3i and various diene
acids such as 3a–c in a collective effort with other labora-
tories to reveal the mysterious structure of the biologically
potent natural iriomoteolide-1a. Detail of these results
will be reported in due course.
(7) For a review on B-alkyl Suzuki–Miyaura coupling, see:
Chemler, S. R.; Trauner, D.; Danishefsky, S. J. Angew.
Chem. Int. Ed. 2001, 40, 4544.
(8) (a) Abiko, A.; Liu, J.-F.; Masamune, S. J. Am. Chem. Soc.
1997, 119, 2586. (b) Inoue, T.; Liu, J.-F.; Buske, D.; Abiko,
A. J. Org. Chem. 2002, 67, 5250.
(9) Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 13, 3769.
(10) Characterization Data for (2Z,4R,5S)-Diene Acid 3a
A pale yellow oil. [a]D20 –72.2 (c 2.85, CHCl3). Rf = 0.28
(17% EtOAc–PE). IR (film): 2957, 2925, 2858, 1695, 1632,
1254, 1184, 1084 cm–1. 1H NMR (400 MHz, CDCl3):
d = 5.78 (d, J = 0.8 Hz, 1 H), 5.74 (ddd, J = 17.6, 10.0, 7.0
Hz, 1 H), 5.20–5.14 (m, 2 H), 4.03 (dd, J = 7.6, 7.6, 1 H),
3.65 (quin, J = 7.2 Hz, 1 H), 1.84 (d, J = 1.2 Hz, 3 H), 0.97
(d, J = 6.8 Hz, 3 H), 0.87 (s, 9 H), 0.06 (s, 3 H), 0.03 (s, 3 H);
CO2H not observed. 13C NMR (100 MHz, CDCl3):
d = 169.5, 159.4, 139.4, 119.2, 116.6, 77.2, 41.2, 25.7 (3×),
20.4, 18.2, 14.7, –4.1, –5.0. HRMS (+TOF EI): m/z [M+]
calcd for C15H28O3Si: 284.1808; found: 284.1812.
Supporting Information for this article is available online at
Acknowledgment
The Laboratory of Asymmetric Catalysis and Synthesis is esta-
blished under the Cheung Kong Scholars Program of The Ministry
of Education of China. This work is supported by The National Na-
tural Science Foundation of China (grant no. 21072165), Zhejiang
University, Zhejiang University Education Foundation, and Depart-
ment of Chemistry, HKUST.
Characterization Data for (2E,4R,5S)-Diene Acid 3b
A pale yellow oil. [a]D20 –5.3 (c 3.90, CHCl3). Rf = 0.26
(17% EtOAc–PE). IR (film): 2958, 2925, 2858, 1693, 1643,
1253, 1087 cm–1. 1H NMR (500 MHz, CDCl3): d = 5.73 (s,
1 H), 5.69 (ddd, J = 17.5, 10.0, 7.0 Hz, 1 H), 5.15 (d, J = 17.5
Hz, 1 H), 5.12 (d, J = 11.0 Hz, 1 H), 4.04 (dd, J = 7.0, 7.0
Hz, 1 H), 2.33 (quin, J = 7.0 Hz, 1 H), 2.17 (s, 3 H), 1.00 (d,
J = 7.0 Hz, 3 H), 0.86 (s, 9 H), 0.02 (s, 3 H), 0.00 (s, 3 H);
CO2H not observed. 13C NMR (125 MHz, CDCl3):
d = 172.3, 164.8, 139.5, 116.6, 116.0, 76.9, 50.6, 25.7 (3×),
18.1, 17.4, 14.9, –4.1, –5.1. HRMS (+TOF EI): m/z [M+]
calcd for C15H28O3Si: 284.1808; found: 284.1812.
References and Notes
(1) For isolation and proposed structures of iriomoteolide-1a, -1b,
and -1c, see: (a) Tsuda, M.; Oguchi, K.; Iwamoto, R.;
Okamoto, Y.; Kobayashi, J.; Fukushi, E.; Kawabata, J.;
Ozawa, T.; Masuda, A.; Kitaya, Y.; Omasa, K. J. Org.
Chem. 2007, 72, 4469. (b) Tsuda, T.; Oguchi, K.; Iwamoto,
R.; Okamoto, Y.; Fukushi, E.; Kawabata, J.; Ozawa, T.;
Masuda, A. J. Nat. Prod. 2007, 70, 1661.
(2) For total synthesis of the proposed structures and stereomers
of iriomoteolide-1a and -1b, see: (a) Xie, J.; Ma, Y.; Horne,
D. A. Chem. Commun. 2010, 46, 4770. (b) Li, S.; Chen, Z.;
Xu, Z.; Ye, T. Chem. Commun. 2010, 46, 4773. (c) Ghosh,
A. K.; Yuan, H. Org. Lett. 2010, 12, 3120. (d) Fang, L.;
Yang, J.; Yang, F. Org. Lett. 2010, 12, 3124.
(3) For synthesis of fragments of iriomoteolide-1a, see:
(a) Fang, L.; Xue, H.; Yang, J. Org. Lett. 2008, 10, 4645.
(b) Ghosh, A. K.; Yuan, H. Tetrahedron Lett. 2009, 50,
1416. (c) Xie, J.; Horne, D. A. Tetrahedron Lett. 2009, 50,
4485. (d) Xie, J.; Ma, Y.; Horne, D. A. Org. Lett. 2009, 11,
5082. (e) Ye, Z.; Deng, L.; Qian, S.; Zhao, G. Synlett 2009,
2469. (f) Chin, Y.-J.; Wang, S.-Y.; Loh, T.-P. Org. Lett.
2009, 11, 3674. (g) Wang, S.-Y.; Chin, Y.-J.; Loh, T.-P.
Synthesis 2009, 3557. (h) Paterson, I.; Rubenbauer, P.
Synlett 2010, 571. (i) Liu, Y.; Wang, J.; Li, H.; Wu, J.; Feng,
G.; Dai, W.-M. Synlett 2010, 2184.
Characterization Data for (2E,4S,5R)-Diene Acid 3c
A pale yellow oil. [a]D20 +4.5 (c 1.65, CHCl3). Other
spectroscopic data are identical to those of 3b.
(11) We obtained an analogous byproduct to 19 from global
desilylation of 14 in 27% yield but its structure (compound
26 in Scheme 6 in ref. 3i) was wrongly assigned due to error
in its 1H NMR analysis. A corrected structure based on the
newly obtained 1H NMR and other spectroscopic data is
found in Supporting Information of this article.
(12) Desilylation of an analogous substrate to 14 under the
pyridine-buffered HF·pyridine conditions was reported in
ref. 3d without migration of the C11 double bond.
(13) Representative Procedure for the RCM Reaction
To a stirred solution of 17 (13.8 mg, 2.6×10–2 mmol) in dry
CH2Cl2 (25 mL) at r.t. was added Grubbs second-generation
initiator (2.4 mg, 2.8×10–3 mmol) followed by stirring at the
same temperature for 1.5 h. The reaction mixture was
condensed under reduced pressure, and the residue was
Synlett 2011, No. 12, 1774–1778 © Thieme Stuttgart · New York