tpOXD-mTP was prepared by a procedure similar to that of
tOXD-mTP. The yield is 76%.
References
1 (a) M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley,
M. E. Thompson and S. R. Forrest, Nature, 1998, 395, 151; (b)
M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson and
S. R. Forrest, Appl. Phys. Lett., 1999, 75, 4; (c) S. Lamansky,
P. Djurovich, D. Murphy, F. Abdel-Razzaq, H. E. Lee, C. Adachi,
P. E. Burrows, S. R. Forrest and M. E. Thompson, J. Am. Chem.
Soc., 2001, 123, 4304; (d) S. Y. Ahn and Y. Ha, Mol. Cryst. Liq.
Cryst., 2009, 504, 59; (e) C. H. Fan, P. Sun, T. H. Su and
C. H. Cheng, Adv. Mater., 2011, 23, 2981; (f) A. Chaskar,
H. F. Chen and K. T. Wong, Adv. Mater., 2011, 23, 3876; (g)
J. Kwak, Y.-Y. Lyu, H. Lee, B. Choi, K. Char and C. Lee, J.
Mater. Chem., 2012, 22, 6351.
1
tOXD-mTP. H-NMR (400 MHz, CDCl3, d): 8.31 (s, 2H),
8.05–8.03 (d, J ¼ 8 Hz, 2H), 7.87 (s, 1H), 7.81–7.79 (d, J ¼ 8
Hz, 2H), 7.68–7.66 (d, J ¼ 8 Hz, 2H), 7.62–7.58 (m, 3H), 1.50
(s, 18H). 13C-NMR (100 MHz, CDCl3, d): 173.27, 164.49,
141.85, 140.79, 130.30, 129.53, 129.50, 126.81, 126.15, 125.80,
125.47, 124.82, 32.50, 28.25; HRMS (FAB) calcd for
C30H30N4O2 (M+ + 1): 479.2447. Found: 479.2457. Anal. calcd
for C30H30N4O2: C 75.29, H 6.32, N 11.71; found: C 75.41, H
6.41, N 11.55%.
2 (a) Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson and
S. R. Forrest, Nature, 2006, 440, 908; (b) N. Matsusue, S. Ikame,
Y. Suzuki and H. Naito, J. Appl. Phys., 2005, 97, 123512; (c)
tpOXD-mTP. 1H-NMR (400 MHz, CDCl3, d): 8.41 (s, 2H),
8.14–8.12 (d, J ¼ 8 Hz, 2H), 8.09–8.07 (d, J ¼ 8 Hz, 4H), 7.92 (s,
1H), 7.84–7.82 (d, J ¼ 8 Hz, 2H), 7.68–7.66 (d, J ¼ 8 Hz, 2H), 7.64–
7.53 (m, 7 H), 1.34 (s, 18H). 13C-NMR (100 MHz, CDCl3, d):
164.72, 164.20, 155.32, 141.80, 140.63, 130.35, 129.57, 129.53,
127.18, 126.75, 126.04, 125.99, 125.81, 125.51, 124.57, 120.95,
35.01, 31.04. HRMS (EI) calcd for C42H38N4O2 (M+): 630.2995.
Found: 630.2995. Anal. calcd for C42H38N4O2: C 79.97, H 6.07, N
8.88; found: C 79.77, H 6.20, N 8.87%.
ꢁ
H. Choukri, A. Fischer, S. Forget, S. Chenais, M.-C. Castex,
D. Ades, A. Siove and B. Geffroy, Appl. Phys. Lett., 2006, 89,
ꢂ
183513; (d) J. Zhao, J. Yu, Z. Ma, L. Li and Y. Jiang, Synth. Met.,
ꢁ
2011, 161, 2417; (e) M. Lebental, H. Choukri, S. Chenais,
S. Forget, A. Siove, B. Geffroy and E. Tutis, Phys. Rev. B:
Condens. Matter Mater. Phys., 2009, 79, 165318.
3 (a) N. Chopra, J. Lee, Y. Zheng, S.-H. Eom, J. Xue and F. So, Appl.
Phys. Lett., 2008, 93, 143307; (b) P. Strohriegl and J. V. Grazulevicius,
Adv. Mater., 2002, 14, 1439; (c) Y. Li, M. K. Fung, Z. Xie, S. T. Lee,
L.-S. Hung, J. Shi and Y. Q. Li, Adv. Mater., 2002, 14, 1317.
4 (a) H. Sasabe, E. Gonmori, T. Chiba, Y.-J. Li, D. Tanaka, S.-J. Su,
T. Takeda, Y.-J. Pu, K.-I. Nakayama and J. Kido, Chem. Mater.,
2008, 20, 5951; (b) S.-J. Su, T. Chiba, T. Takeda and J. Kido, Adv.
Mater., 2008, 20, 2125; (c) D. Tanaka, Y. Agata, T. Takeda,
S. Watanabe and J. Kido, Jpn. J. Appl. Phys., 2007, 46, L117;
(d) D. Tanaka, T. Takeda, T. Chiba, S. Watanabe and J. Kido,
Chem. Lett., 2007, 36, 262; (e) L. X. Xiao, Z. J. Chen, B. Qu,
J. X. Luo, S. Kong, Q. H. Gong and J. Kido, Adv. Mater.,
2011, 23, 926; (f) S.-J. Su, Y. Taikahashi, T. Chiba, T. Takeda
and J. Kido, Adv. Funct. Mater., 2009, 19, 1260; (g)
M. Ichikawa, T. Yamamoto, H. Jeon, K. Kase, S. Hayashi,
M. Nagaoka and N. Yokoyama, J. Mater. Chem., 2012, 22,
6765; (h) M. Ichikawa, S. Mochizuki, H.-G. Jeon, S. Hayashi,
N. Yokoyama and Y. Taniguchi, J. Mater. Chem., 2011, 21,
11791; (i) M. Ichikawa, S. Fujimoto, Y. Miyazawa, T. Koyama,
N. Yokoyama, T. Miki and Y. Taniguchi, Org. Electron., 2008,
9, 77.
5 (a) H. Tsuji, K. Sato, Y. Sato and E. Nakamura, J. Mater. Chem.,
2009, 19, 3364; (b) S. O. Jeon, K. S. Yook, J. Y. Lee, S. M. Park,
J. W. Kim, J. H. Kim, J.-A. Hong and Y. Park, Appl. Phys. Lett.,
2011, 98, 073306; (c) A. L. Von Ruden, L. Cosimbescu,
E. Polikarpov, P. K. Koech, J. S. Swensen, L. Wang, J. T. Darsell
and A. B. Padmaperuma, Chem. Mater., 2010, 22, 5678.
6 (a) T.-H. Huang, W.-T. Whang, J. Y. Shen, Y.-S. Wen, J. T. Lin,
T.-H. Ke, L.-Y. Chen and C.-C. Wu, Adv. Funct. Mater., 2006, 16,
1449; (b) X. Xu, G. Yu, S. Chen, C. Di and Y. Liu, J. Mater.
Chem., 2008, 18, 299; (c) S. Dailey, W. J. Feast, R. J. Peace,
I. C. Sage, S. Till and E. L. Wood, J. Mater. Chem., 2001, 11, 2238.
7 (a) H.-F. Chen, S.-J. Yang, Z.-H. Tsai, W.-Y. Hung, T.-C. Wang and
K.-T. Wong, J. Mater. Chem., 2009, 19, 8112; (b) T. Matsushima,
M. Takamori, Y. Miyashita, Y. Honma, T. Tanaka, H. Aihara and
H. Murata, Org. Electron., 2010, 11, 16; (c) H. Inomata, K. Goushi,
T. Masuko, T. Konno, T. Imai, H. Sasabe, J. J. Brown and
C. Adachi, Chem. Mater., 2004, 16, 1285.
5.2 Physical property measurements
UV-vis absorption spectra were recorded using a Hitachi U-3300
spectrophotometer. PL spectra and phosphorescent spectra at 77
K were measured on a Hitachi F-4500 spectrophotometer. The
electrochemical properties of the OXDs derivatives were
measured by Riken Keiki Co. ACII spectrometer. The HRMS
were measured on a MAT-95XL HRMS or a JEOL JMS-700
Mstation. Elemental analysis was measured on an Elementar
vario EL III. The glass transition temperatures of the compounds
were determined by DSC under nitrogen atmosphere using a
DSC-Q10 instrument. The decomposition temperatures were
determined by TGA using TGA-Q500 instrument.
5.3 OLED fabrication and measurements
Organic chemicals used for fabricating devices were generally
purified by high-vacuum, gradient temperature sublimation. The
EL devices were fabricated by vacuum deposition of the mate-
rials at 10ꢀ6 Torr onto a glass precoated with a layer of indium
tin oxide with a sheet resistance of 30 U per square. The depo-
sition rate for organic compounds is 1–2 A sꢀ1. The cathode
ꢀ
consisting of Al/LiF was deposited by evaporation of LiF with a
deposition rate of 0.1 A sꢀ1 and then by evaporation of Al metal
ꢀ
with a rate of 3 A sꢀ1. The effective area of the emitting diode was
ꢀ
9.00 mm2. Current, voltage, and light intensity measurements
were made simultaneously using a Keithley 2400 source meter
and a Newport 1835-C optical meter equipped with a Newport
818-ST silicon photodiode. Electroluminescence spectra were
measured on a Hitachi F-4500 fluorescence spectrophotometer
(see ESI,† S12).
8 W. White, Z. M. Hudson, X. Feng, S. Han, Z.-H. Liu and S. Wang,
Dalton Trans., 2010, 39, 892.
9 P. Kathirgamanathan, S. Surendrakumar, R. R. Vanga,
S. Ravichandran, A.-L. Juan, S. Ganeshamurugan, M. Kumaraverl,
G. Paramaswara and V. Arkley, Org. Electron., 2011, 12, 666.
10 (a) S. Gong, Y. Chen, X. Zhang, P. Cai, C. Zhong, D. Ma, J. Qin and
C. Yang, J. Mater. Chem., 2011, 21, 11197; (b) S. Gong, Q. Fu,
Q. Wang, C. Yang, C. Zhong, J. Qin and D. Ma, Adv. Mater.,
2011, 23, 4956; (c) Y. Hamada, C. Adachi, T. Tsutsui and S. Saito,
Acknowledgements
€
Optoelectronics, 1992, 7, 83; (d) X. Yang, D. C. Muller, D. Neher
and K. Meerholz, Adv. Mater., 2006, 18, 948; (e) A. Nakamura,
T. Tada, M. Mizukami and S. Yagyu, Appl. Phys. Lett., 2004, 84,
130; (f) Y. Tao, C. Yang and J. Qin, Chem. Soc. Rev., 2011, 40,
We thank the Ministry of Economy (100-EC-17-A-08-S1-042)
and the National Science Council of the Republic of China
(NSC-100-2119-M-007-010-MY3) for support of this research.
17798 | J. Mater. Chem., 2012, 22, 17792–17799
This journal is ª The Royal Society of Chemistry 2012