Organic Letters
Letter
ORCID
34 as an auxiliary to induce high enantioselectivity followed by
removal of this substituent via Baeyer−Villiger oxidation to
access the desired esters seemed viable.14 However, applying
the typical Baeyer−Villiger procedure to enantioenriched
cycloadducts 34, 39, and 44 furnished the corresponding
hydroxy lactones 48−50 (Scheme 4). Selective Baeyer−
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
Scheme 4. Hydroxylactonization of the Diels−Alder Adduct
by a Baeyer−Villiger/Epoxidation/Epoxide Opening
■
This research was supported by the Deutsche Forschungsge-
meinschaft (Oe 249/12-1). M.O. is indebted to the Einstein
Foundation (Berlin) for an endowed professorship.
a
Reaction Sequence
REFERENCES
■
(1) Hara, K.; Akiyama, R.; Sawamura, M. Org. Lett. 2005, 7, 5621−
5623.
(2) (a) Klare, H. F. T.; Bergander, K.; Oestreich, M. Angew. Chem.,
Int. Ed. 2009, 48, 9077−9079. (b) Schmidt, R. K.; Mu
ther, K.; Muck-
̈ ̈
Lichtenfeld, C.; Grimme, S.; Oestreich, M. J. Am. Chem. Soc. 2012,
̈
̈
134, 4421−4428. (c) Nodling, A. R.; Muther, K.; Rohde, V. H. G.;
Hilt, G.; Oestreich, M. Organometallics 2014, 33, 302−308.
(3) Johannsen, M.; Jørgensen, K. A.; Helmchen, G. J. Am. Chem. Soc.
1998, 120, 7637−7638.
(4) (a) Rohde, V. H. G.; Muller, M. F.; Oestreich, M.
̈
Organometallics 2015, 34, 3358−3373. (b) Shaykhutdinova, P.;
Oestreich, M. Organometallics 2016, 35, 2768−2771. (c) Shaykhutdi-
nova, P.; Kemper, S.; Oestreich, M. Eur. J. Org. Chem. 2018, 2896−
2901.
a
1
Diastereomeric ratios determined by H NMR analysis of the crude
b
material prior to purification. Analytically pure cycloadduct after
flash column chromatography on silica gel. Determined by HPLC
analysis using a chiral stationary phase.
c
̈
(5) Schmidt, R. K.; Klare, H. F. T.; Frohlich, R.; Oestreich, M. Chem.
- Eur. J. 2016, 22, 5376−5383.
(6) For examples of enantioselective Diels−Alder reactions with
cyclopentadiene catalyzed by chiral silicon Lewis acids, see for
example: (a) Kubota, K.; Hamblett, C. L.; Wang, X.; Leighton, J. L.
Tetrahedron 2006, 62, 11397−11401. (b) Sakaguchi, Y.; Iwade, Y.;
Sekikawa, T.; Minami, T.; Hatanaka, Y. Chem. Commun. 2013, 49,
11173−11175. (c) Gatzenmeier, T.; van Gemmeren, M.; Xie, Y.;
Villiger oxidation and epoxidation of the CC double bond
with mCPBA, followed by intramolecular epoxide opening
with the formed carboxylate, finally afforded 48−50 in
moderate yields and with hardly any erosion of the
enantiopurity. This Diels−Alder cycloaddition with subsequent
epoxidation−epoxide opening represents a new enantioselec-
tive access to bicyclo[2.2.2]octane-derived hydroxy lactones.15
In this work, we described the preparation of sulfur-
stabilized silicon cations (S,S)-6 and (S,S)-7 with H8-
binaphthyl thioether backbones. This structural element led
to markedly improved enantioselectivities in the Diels−Alder
reaction of cyclohexa-1,3-diene (3) and chalcone (4). With
(S,S)-6, enantiomeric excesses of up to 81% were obtained for
challenging cyclohexa-1,3-diene/chalcone derivative combina-
tions. We also demonstrated the utility of these enantioen-
riched cycloadducts by transforming them into the correspond-
ing hydroxy lactones with no loss of enantioselectivity through
a one-pot sequential Baeyer−Villiger oxidation, epoxidation,
and intramolecular epoxide opening.
̈
Hofler, D.; Leutzsch, M.; List, B. Science 2016, 351, 949−952.
(7) Examples of cyclohexa-1,3-diene Diels−Alder reactions with
chalcone as dienophile: (a) Kinsman, A. C.; Kerr, M. A. Org. Lett.
2000, 2, 3517−3520 (ultrahigh pressure) . (b) Karthikeyan, M.;
Kamakshi, R.; Sridar, V.; Reddy, B. S. R. Synth. Commun. 2003, 33,
4199−4204 (microwave irradiation) . (c) Liu, Z.; Ganguly, R.;
́
Vidovic, D. Dalton Trans 2017, 46, 753−759 (aluminum Lewis acid) .
(8) A small number of cyclohexa-1,3-diene Diels−Alder reactions
with more reactive cinnamic aldehyde as dienophile are known:
́
Racemic: (a) Bah, J.; Franzen, J. Chem. - Eur. J. 2014, 20, 1066−1072
(carbocations as Lewis acids) . (b) Cashin, C. H.; Fairhurst, J.;
Horwell, D. C.; Pullar, I. A.; Sutton, S.; Timms, G. H.; Wildsmith, E.;
Wright, F. Eur. J. Med. Chem. 1978, 13, 495−501 (irradiation of
cyanoarenes as sensitizer) . Enantioselective: (c) Gould, E.; Lebl, T.;
Slawin, A. M. Z.; Reid, M.; Davies, T.; Smith, A. D. Org. Biomol.
Chem. 2013, 11, 7877−7892 (chiral hydrazides) .
(9) (a) Prakash, G. K. S.; Bae, S.; Wang, Q.; Rasul, G.; Olah, G. A. J.
Org. Chem. 2000, 65, 7646−7649. (b) Berlekamp, U.-H.; Jutzi, P.;
Mix, A.; Neumann, B.; Stammler, H.-G.; Schoeller, W. W. Angew.
Chem., Int. Ed. 1999, 38, 2048−2050.
(10) Corey, J. Y. J. Am. Chem. Soc. 1975, 97, 3237−3238.
(11) The catalysis was examined in different solvents with our
previous catalyst system (S,S)-2. The catalyst was stable in all tested
solvents (CH2Cl2, benzene, toluene, and 1,2-F2C6H4), giving
cycloadduct 5 in similar yields and enantioselectivities. Also, no
improvement of enantioselectivity was observed at lower reaction
temperature (0 °C) in our model Diels−Alder reaction with the
catalyst (S,S)-1.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Synthetic procedures and NMR spectra of the
compounds synthesized in this paper, as well as
analytical data for the unknown compounds (PDF)
(12) Maruoka, K.; Imoto, H.; Yamamoto, H. J. Am. Chem. Soc. 1994,
116, 12115−12116.
(13) (a) Furuta, K.; Shimizu, S.; Miwa, Y.; Yamamoto, H. J. Org.
Chem. 1989, 54, 1481−1483. (b) Yoon, T.; Danishefsky, S. J.; de
Gala, S. Angew. Chem., Int. Ed. Engl. 1994, 33, 853−855 and cited
AUTHOR INFORMATION
Corresponding Author
■
D
Org. Lett. XXXX, XXX, XXX−XXX