ChemSusChem p. 70 - 77 (2013)
Update date:2022-08-02
Topics:
Cheng, Ming
Yang, Xichuan
Li, Jiajia
Zhang, Fuguo
Sun, Licheng
Novel cyanine dyes, in which a tetrahydroquinoline derivative is used as an electron donor and 1-butyl-5-carboxy-3, 3-dimethyl-indol-1-ium moiety is used as an electron acceptor and anchoring group, were designed and synthesized for application in dye-sensitized solar cells. The photovoltaic performance of these solar cells depends markedly on the molecular structure of the dyes in terms of the n-hexyl chains and the methoxyl unit. Retardation of charge recombination caused by the introduction of n-hexyl chains resulted in an increase in electron lifetime. As a consequence, an improvement of open-circuit photovoltage (V oc) was achieved. Also, the electron injection efficiencies were improved by the introduction of methoxyl moiety, which led to a higher short-circuit photocurrent density (Jsc). The highest average efficiency of the sensitized devices (η) was 5.6 % (Jsc=13.3 mA cm-2, Voc=606 mV, and fill factor FF=69.1 %) under 100 mW cm-2 (AM 1.5G) solar irradiation. All of these dyes have very high absorption extinction coefficients and strong absorption in a relatively narrow spectrum range (500-650 nm), so one of our organic dyes was explored as a sensitizer in co-sensitized solar cells in combination with the other two other existing organic dyes. Interestingly, a considerably improved photovoltaic performance of 8.2 % (Jsc=20.1 mA cm-2, Voc=597 mV, and FF=68.3 %) was achieved and the device showed a panchromatic response with a high incident photon-to-current conversion efficiency exceeding 85 % in the range of 400-700 nm. Sensitive dyes absorb it all: Co-sensitization of three spectrally complementary dyes on a TiO2 film in a well-designed sequence significantly improves the photovoltaic performance of the device, and an efficiency of 8.2 % is achieved. The devices demonstrate a panchromatic response with an incident photon-to-current conversion efficiency >80 % over the entire visible spectral region from 400 to 700 nm. Copyright
View MoreContact:86-15588110016
Address:LINYI CITY,SHANDONG PROVINCE,CHINA
website:http://www.mascot-ie.com
Contact:86-519-85010339
Address:B-802,XingBei Building,391#,Tongjiang Middle Road New District,Changzhou,JS,China
Hangzhou Dingyan Chem Co., Ltd
website:http://www.dingyanchem.com
Contact:86-571-87157530-8007
Address:RM.1118,NO.1 Building, Baiyun Tower,Jianggan Area, Hangzhou city, China,310004
SEA BRGIHT INDUSTRY CO.,LIMITED
Contact:0086 755 8622 3990
Address:Rm 17B3,GuangCaiXinTianDi Bldg,GuiMiao Rd,NanShan District,Shenzhen,China
Shanghai Longjin Metallic Material Co., Ltd.
website:http://www.shlongjin.cn/
Contact:021-56517503,56502257
Address:No.16, Lane 555, Chengyin Road, Shanghai
Doi:10.1021/ja01525a060
(1959)Doi:10.1016/j.poly.2012.11.051
(2013)Doi:10.1016/j.tet.2013.01.053
(2013)Doi:10.1039/c3gc37131j
(2013)Doi:10.1016/j.bmc.2013.01.017
(2013)Doi:10.1039/c3ob27457h
(2013)