B. Zhong et al. / Bioorg. Med. Chem. Lett. 21 (2011) 5324–5327
5327
13. Zhu, J.; Huang, J. W.; Tseng, P. H.; Yang, Y. T.; Fowble, J.; Shiau, C. W.; Shaw, Y.
J.; Kulp, S. K.; Chen, C. S. Cancer Res. 2004, 64, 4309.
14. Kawamori, T.; Nakatsugi, S.; Ohta, T.; Sugimura, T.; Wakabayashi, K. Adv. Exp.
Med. Biol. 2002, 507, 371.
15. Nakatsugi, S.; Ohta, T.; Kawamori, T.; Mutoh, M.; Tanigawa, T.; Watanabe, K.;
Sugie, S.; Sugimura, T.; Wakabayashi, K. Jpn. J. Cancer Res. 2000, 91, 886.
16. Shaik, M. S.; Chatterjee, A.; Singh, M. Clin. Cancer Res. 2004, 10, 1521.
17. Tian, G.; Yu, J. P.; Luo, H. S.; Yu, B. P.; Yue, H.; Li, J. Y.; Mei, Q. World J.
Gastroenterol. 2002, 8, 483.
18. Su, B.; Darby, M. V.; Brueggemeier, R. W. J. Comb. Chem. 2008, 10, 475.
19. Zhong, B.; Cai, X.; Yi, X.; Zhou, A.; Chen, S.; Su, B. J. Steroid Biochem. Mol. Biol.
2011, 126, 10.
6.686 (1H, d, J = 8.4 Hz), 5.677 (1H, b), 5.024 (2H, s), 3.487 (2H, b), 3.184 (2H, d,
J = 6.4 Hz), 2.691 (3H, s), 2.312 (7H, m), 2.178–1.290 (26H, m), 0.878 (3H, t,
J = 6.8 Hz); Compound 8b: White powder, 1H NMR (400 MHz, CDCl3) d 8.294
(1H, s), 8.006 (1H, s), 7.854 (5H, m), 7.528 (2H, m), 7.185 (1H, d, J = 8.4 Hz),
7.077 (3H, m), 6.696 (1H, dd, J = 2, 8.4 Hz), 6.589 (1H, s), 4.997 (2H, s), 3.455
(4H, m), 2.680 (3H, s), 2.289 (7H, m), 1.931–1.192 (18H, m); Compound 8c:
White powder, 1H NMR (400 MHz, CDCl3) d 8.201 (1H, s), 8.085 (1H, s), 7.203
(1H, d, J = 8.4 Hz), 7.101 (3H, m), 6.763 (1H, dd, J = 2, 8.4 Hz), 6.186 (1H, s),
6.115 (1H, t, J = 6 Hz), 5.223 (1H, s), 5.040 (2H, s), 4.498 (1H, m), 4.314 (1H, m),
3.488 (2H, m), 3.149 (3H, m), 2.900 (1H, dd, J = 4.8, 128 Hz), 2.717 (1H, d,
J = 124 Hz), 2.684 (3H, s), 2.314 7H, m), 2.195 (2H, t, J = 7.2 Hz), 1.951–1.283
(24H, m); HRMS calculated for
756.3847.
C
39H58N5O6S2 (M+H)+ 756.3828, found
20. Chen, B.; Su, B.; Chen, S. Biochem. Pharmacol. 2009, 77, 1787.
21. Compound 5: White powder, 1H NMR (400 MHz, CDCl3)
d
7.970 (1H, d,
22. The effect of JCC76 probes on SKBR-3 breast cancer cell viability was assessed by
using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide
assay (MTT) in triplicates. Cells were grown in custom medium in 96-well, flat-
bottomed plates for 24 h, and were exposed to various concentrations of
nimesulide derivatives dissolved in DMSO (final concentration 60.1%) in media
for 72 h. Controls received DMSO vehicle at a concentration equal to that in
J = 2 Hz), 7.453 (1H, d, J = 8.4 Hz), 7.232 (1H, s), 7.126 (3H, m), 6.696 (1H, dd,
J = 2, 8.4 Hz), 6.555 (1H, s), 5.047 (2H, s), 2.834 (3H, s), 2.336 (3H, s), 2.313 (3H,
s), 2.242 (1H, tt, J = 3.6, 12 Hz), 1.245–1.985 (10H, m); Compound 6a: White
powder, 1H NMR (400 MHz, CDCl3) d 7.995 (1H, d, J = 2.4 Hz), 7.410 (1H, s),
7.210 (1H, d, J = 8.4 Hz), 7.094 (3H, m), 6.643 (1H, dd, J = 2.4, 8.4 Hz), 5.036 (2H,
s), 3.482 (2H, b), 2.693 (3H, s), 2.317 (6H, s), 2.258 (1H, tt, J = 3.6, 12 Hz), 1.970–
1.174 (18H, m), 0.842 (3H, t, J = 6.8 Hz); Compound 6b: White powder, 1H
NMR (400 MHz, CDCl3) d 7.902 (1H, d, J = 2.4 Hz), 7.509 (1H, s), 7.230 (1H, d,
J = 8.4 Hz), 7.178 (1H, s), 7.091 (2H, m), 6.696 (1H, dd, J = 2.4, 8.8 Hz), 5.001
(2H, s), 3.471 (8H, m), 3.338 (3H, s), 2.792 (3H, s), 2.317 (3H, s), 2.311 (3H, s),
2.253 (1H, tt, J = 3.6, 12 Hz), 1.956–1.254 (10H, m); Compound 8a: White
powder, 1H NMR (400 MHz, CDCl3) d 8.027 (1H, s), 7.883 (1H, s), 7.134 (4H, m),
drug-treated cells. The medium was removed, replaced by 200 ll of 0.5 mg/ml
of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide in fresh
media, and cells were incubated in the CO2 incubator at 37 °C for 2 h.
Supernatants were removed from the wells, and the reduced 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium
bromide
dye
was
solubilized in 200
plate reader.
ll/well DMSO. Absorbance at 570 nm was determined on a