C. Bolchi et al. / Bioorg. Med. Chem. Lett. 21 (2011) 5408–5412
5411
12. Bolchi, C.; Pallavicini, M.; Fumagalli, L.; Ferri, N.; Corsini, A.; Rusconi, C.; Valoti,
E. Bioorg. Med. Chem. Lett. 2009, 19, 5500.
less potent than FTI-276 (49 vs 9 nM IC50) and, consequently, than
III, which is reported equipotent to FTI-276 in FTase inhibition.13
Similar basicity of 2-amino-4-thiazole to pyridine64 and improved
complexation properties65 could account for such results and, at
the same time, explain why, on the contrary, replacement with
2-mercapto-4-thiazolyl is detrimental. Compounds 3 and 4 show
a modest FTase inhibition suggesting that their moderate antipro-
liferative activity is not due to interference with Ras prenylation. It
is evident that the introduction of SH substituent instead of NH2
into the 2 position of 4-thiazolyl is pejorative and that the macro-
scopic difference between 2-aminothiazole and 2-mercaptothiaz-
ole resides in the weak basicity of the former opposed to the
weak acidity of the latter. Such a difference cannot be considered
uninfluential, especially in molecules with a carboxylic head, and
it is not accidental that the fragment mimicking cysteine in the
known CAAX mimetics preferably has weakly basic or neutral char-
acter rather than acidic. Exemplary is the modest FTase inhibition
of the CAAX mimetics with phenolic or thiophenolic groups in place
of cysteine.66,67 Moreover, the tautomeric thione-thiol equilibrium
might further justify the remarkable decrease of activity.68 Obvi-
ously, this does not mean that SH methylation is sufficient to re-
store the FTase activity, as demonstrated by compounds 7 and 8,
which are also modestly or totally inactive. Though 2-methylmer-
capto-4-thiazole doesn’t substantially differ from unsubstituted 4-
thiazole in basicity and complexation properties, compounds 7 and
8 are much less potent than thiazolic CAAX mimetics reported in
literature. Therefore, the negative effect of the methylthio substitu-
ent on thiazole interaction should be of different nature from that
of sulfhydryl.
13. O’Connor, S. J.; Barr, K. J.; Wang, L.; Sorensen, B. K.; Tasker, A. S.; Sham, H.;
Ng, S.-C.; Cohen, J.; Devine, E.; Cherian, S.; Saeed, B.; Zhang, H.; Lee, J. Y.;
Warner, R.; Tahir, S.; Kovar, P.; Ewing, P.; Alder, J.; Mitten, M.; Leal, J.; Marsh,
K.; Bauch, J.; Hoffman, D. J.; Sebti, S. M.; Rosenberg, S. H. J. Med. Chem. 1999,
42, 3701.
14. Cecchi, R.; Ciabatti, R.; Favara, D.; Barone, D.; Bandoli, E. Farmaco Ed. Sci. 1985,
40, 541.
15. Hunt, J. T.; Lee, V. G.; Leftheris, K.; Seizinger, B.; Carboni, J.; Mabus, J.; Ricca, C.;
Yan, N.; Manne, V. J. Med. Chem. 1996, 39, 353.
16. Vasudevan, A.; Qian, Y.; Vogt, A.; Blaskovich, M. A.; Ohkanda, J.; Sebti, S. M.;
Hamilton, A. D. J. Med. Chem. 1999, 42, 1333.
17. Compound 10: DCM/water (pH 2) extraction; mp 166 °C; 1H NMR (CDCl3) d
8.26 (dd, J = 8.5, 2.2 Hz, 1H), 8.14 (m, 2H), 7.27 (m, 3H), 7.07 (d, J = 7.4, 1H), 2.09
(s, 3H).
18. Compound 11: LC on silica gel (eluent: cyclohexane/EtOAc 70:30);
½
a 2D5
ꢀ
¼ þ29:6 (c 1, CHCl3); 1H NMR (CDCl3) d 8.27 (dd, J = 8.5, 2.5 Hz, 1H),
8.05 (m, 2H), 7.30 (m, 3H), 7.17 (d, J = 6.6 Hz, 1H), 6.03 (d, J = 7.4 Hz, 1H), 4.94
(septet, J = 6.05 Hz, 1H), 4.54 (m, 1H), 2.20 (s, 1H), 2.09 (s, 1H), 2.01 (s, 3H), 1.85
(m, 1H), 1.60 (m, 1H), 1.41 (s, 3H), 1.18 (m, 6H).
19. Compound 12: LC on silica gel (eluent: cyclohexane/EtOAc 60:40);
½
a 2D5
ꢀ
¼ þ18:7 (c 1, CHCl3); 1H NMR (CDCl3) d 7.90 (m, 1H), 7.28 (m, 3H), 7.15
(d, J = 7.9 Hz, 1H), 6.95 (d, J = 8.5 Hz, 1H), 6.78 (s, 1H), 5.85 (m, 1H), 4.95
(septet, J = 6.6 Hz, 1H), 4.55 (m, 1H), 2.20 (s, 2H), 2.04 (m, 6H), 1.80 (m, 1H),
1.57 (m, 1H), 1.20 (m, 6H).
20. Methyl 2-amino-4-thiazolylacetate: obtained in 91% yield as
a white
crystalline solid by treatment of 2-amino-4-thiazolylacetic acid with SOCl2 in
methanol for 12 h; mp 126 °C; 1H NMR (CDCl3) d 6.31 (s, 1H), 5.56 (br s, 2H),
3.77 (s, 3H), 3.58 (s, 2H).
21. Methyl 2-tritylamino-4-thiazolylacetate: obtained in 96% yield as a white
crystalline solid by treatment of methyl 2-amino-4-thiazolylacetate with trityl
chloride and TEA in DCM for 15 h and successive crystallization of the crude
product from diisopropyl ether; mp 177 °C; 1H NMR (CDCl3) d 7.25–7.34 (m,
15H), 6.22 (s, 1H), 3.76 (s, 3H), 3.66 (s, 2H).
22. Compound 13: obtained in 95% yield as a white solid by treatment of methyl 2-
tritylamino-4-thiazolylacetate with 3 N NaOH in boiling methanol for 1 h; mp
152 °C; 1H NMR (CDCl3) d 7.25–7.34 (m, 15H), 6.05 (s, 1H), 3.58 (s, 2H).
23. Compound 21: 1H-NMR (COCl3) d 8.63 (br s, 1H), 7.90–7.82 (m, 1H), 7.41–7.06
(m, 21H), 6.41 (s, 1H), 6.02 (s, 1H), 5.88 (t, J = 7.15 Hz, 1H), 4.99–4.91 (m, 1H),
4.57–4.50 (m, 1H), 2.88–2.84 (m, 2H), 2.65–2.61 (m, 2H), 2.05–1.97 (m, 6H),
1.84–1.70 (m, 2H), 1.56–1.49 (m, 2H), 1.21–1.17 (m, 6H).
The presence of SH substituent seems deleterious also in the
imidazole derivatives 5 and 6, though less than in the thiazole
derivatives 3 and 4, if we consider compound 5. The use of imidaz-
ole to mimick cysteine in CAAX mimetics is widely exemplified and
is generally associated with high FTase activity.5,69,70 Here, 5 shows
only a moderate FTase inhibition and a modest antiproliferative
activity. The reasons, we think, could be analogous to those in-
24. Compound 1a: 1H NMR (DMSO-d6) d 10.16 (s, 1H), 7.95 (d, J = 7.43 Hz, 1H),
7.65 (dd, J = 1.93 Hz, J = 2.21 Hz, 1H), 7.51–7.44 (m, 2H), 7.19–7.10 (m, 4H),
6.29 (s, 1H), 4.90–4.97 (m, 1H), 4.28–4.24 (m, 1H), 3.47 (s, 2H), 2.39–2.15 (m,
2H), 2.12 (s, 3H), 2.05 (s, 3H), 1.89–1.69 (m, 2H), 1.21–1.16 (m, 6H).
25. Methyl 3-(2-amino-4-thaizolyl)propionate: mp 191.33 °C; 1H NMR (DMSO-d6)
d 9.09 (br, 2H), 6.54 (s, 1H), 3.59 (s, 3H), 2.77–2.63 (m, 4H).
voked comparing
3 with 1 and with literature thiazolyl
26. Methyl 3-(2-tritylamino-4-thaizolyl)propionate: mp 149.50 °C; 1H NMR
(CDCl3) d 10.64 (br s, 1H), 7.39–7.29 (m, 15H), 5.93 (s, 1H), 3.68 (s, 3H), 2.96
(t, J = 7.15 Hz, 2H), 2.76 (t, J = 7.15 Hz, 2H).
derivatives.13
In conclusion, we have demonstrated that 2-aminothiazole can
successfully replace cysteine in Ras CAAX mimetics and deserves to
be considered, when designing non-thiol-FTis, an alternative to
unsubstituted heterocycles, such as pyridine, imidazole and thia-
zole. On the contrary, the introduction of sulfhydryl into the 2 po-
sition of these two latter heterocycles seems to prejudice their
ability of mimicking terminal cysteine.
27. Compound 14: 1H NMR (CDCl3) d 10.38 (br s, 1H), 7.37–7.29 (m, 15H), 5.95 (s,
1H), 2.95–2.90 (m, 2H), 2.76–2.71 (m, 2H).
28. Compound 22: 1H NMR (CDCl3) d 8.60 (br s, 1H), 7.95–7.87 (m, 1H), 7.44–7.11
(m, 21H), 6.47 (s, 1H), 6.02 (s, 1H), 5.84 (t, J = 7.15 Hz, 1H), 4.97–4.92 (m, 1H),
4.57–4.50 (m, 1H), 2.88–2.84 (m, 2H), 2.65–2.61 (m, 2H), 2.05–1.97 (m, 6H),
1.86–1.78 (m, 2H), 1.58–1.51 (m, 2H), 1.21–1.17 (m, 6H).
29. Compound 2a: ½a D25
ꢀ
¼ þ18:3 (c 1, CHCl3); 1H NMR (CDCl3) d 8.79 (br s, 1H),
7.96–7.87 (m, 1H), 7.51–7.13 (m, 6H), 6.18 (s, 1H), 5.87 (t, J = 7.15 Hz, 1H),
5.20–5.05 (br s, 2H), 4.99–4.90 (m, 1H), 4.59–4.48 (m, 1H), 2.93–2.89 (m, 2H),
2.73–2.69 (m, 2H), 2.06–1.94 (m, 6 H), 1.86–1.74 (m, 2H), 1.60–1.52 (m, 2H),
1.21–1.16 (m, 6H).
References and notes
30. Ethyl 2-mercapto-4-thiazolylacetate: mp 143 °C; 1H NMR (CDCl3) d 6.46 (s,
1H), 4.23 (q, J = 3.3 Hz, 2H), 3.58 (s, 2H), 1.29 (t, J = 3.3 Hz, 3H).
31. Compound 15: mp 166 °C; 1H NMR (DMSO-d6) d 6.70 (s, 1H), 3.52 (s, 2H), 3.29
(s, 1H).
1. Macaluso, M.; Russo, G.; Cinti, C.; Bazan, V.; Gebbia, N.; Russo, A. J. Cell. Physiol.
2002, 192, 125.
2. Sousa, S. F.; Fernandes, P. A.; Ramos, M. J. Curr. Med. Chem. 2008, 15, 1478.
3. Adjei, A. A.; Davis, J. N.; Bruzek, L. M.; Erlichman, C.; Kaufmann, S. H. Clin.
Cancer Res. 2001, 7, 1438.
4. Taylor, S.; Marrinan, C. H.; Liu, G.; Nale, L.; Bishop, W. R.; Kirshmeier, P.; Liu, M.;
Long, B. J. Gynecol. Oncol. 2008, 109, 97.
5. Shi, B.; Yaremko, B.; Hajian, G.; Terracina, G.; Bishop, W. R.; Liu, M.; Nielsen, L.
L. Cancer Chemoth. Pharm. 2000, 46, 387.
6. Ross, R. N. Eng. J. Med. 1999, 340, 115.
7. Ueno, H.; Yamamoto, H.; Ito, S.; Li, J. J.; Takeshita, A. Arterioscler. Thromb. Vasc.
Biol. 1997, 17, 898.
8. Indolfi, C.; Avvedimento, E. V.; Rapacciuolo, A.; Di Lorenzo, E.; Esposito, G.;
Stabile, E.; Feliciello, A.; Mele, E.; Giuliano, P.; Condorelli, G.; Chiariello, M. Nat.
Med. 1995, 1, 541.
9. Augeri, D. J.; O’Connor, S. J.; Janowick, D.; Szczepankiewicz, B.; Sullivan, G.;
Larsen, J.; Kalvin, D.; Cohen, J.; Devine, E.; Zhang, H.; Cherian, S.; Saeed, B.; Ng,
S. C.; Rosenberg, S. J. Med. Chem. 1998, 41, 4288.
32. Methyl 3-(2-mercapto-4-thiazolyl)propionate: mp 127 °C; 1H NMR (CDCl3) d
11.80 (s, 1H), 3.71 (s, 3H), 2.84 (t, J = 6.6 Hz, 2H), 2.66 (t, J = 6.6 Hz, 2H).
33. Compound 16: mp 192 °C; 1H NMR (DMSO-d6) d 12.26 (s, 1H), 6.58 (s, 1H), 3.35
(s, 1H), 2.70 (m, 2H), 2.51 (m, 2H); 1H NMR (D2O) d 6.57 (s, 1H), 2.78 (t,
J = 7.2 Hz, 2H), 2.62 (t, J = 7.2 Hz, 2H).
34. Compound 3a: LC on silica gel (eluent: cyclohexane/EtOAc 50:50); ½a D25
¼ þ9:9
ꢀ
(c 1, CHCl3); 1H NMR (DMSO-d6) d 10.32 (s, 1H), 8.08 (d, J = 8.0 Hz, 1H), 7.62 (d,
J = 1.9 Hz, 1H), 7.52–7.42 (m, 2H), 7.16–7.05 (m, 4H), 6.73 (s, 1H), 4.84 (septet,
J = 6.1 Hz, 1H), 4.19–4.15 (m, 1H), 3.65 (s, 2H), 2.22–1.98 (m, 5H), 1.94 (s, 3H),
1.82–1.68 (m, 2H), 1.18–1.10 (m, 6H).
35. Compound 4a: LC on silica gel (eluent: cyclohexane/EtOAc 50:50);
½
a 2D5
ꢀ
¼ þ12:1 (c 1, CHCl3); 1H NMR (DMSO-d6)
d 10.16 (s, 1H), 8.04 (d,
J = 6.9 Hz, 1H), 7.60 (dd, J = 8.5, 1.9 Hz, 1H), 7.54–7.40 (m, 2H), 7.18–7.02 (m,
4H), 6.54 (s, 1H), 4.84 (septet, J = 6.3 Hz, 1H), 4.21–4.17 (m, 1H), 2.78–2.68 (m,
2H), 2.67–2.60 (m, 2H), 2.16–1.85 (m, 8H), 1.80–1.62 (m, 2H), 1.18–1.05 (m,
6H).
10. Sakowski, J.; Böhm, M.; Sattler, I.; Dahse, H.-M.; Schlitzer, M. J. Med. Chem.
2001, 44, 2886.
11. Bolchi, C.; Pallavicini, M.; Rusconi, C.; Diomede, L.; Ferri, N.; Corsini, A.;
Fumagalli, L.; Pedretti, A.; Vistoli, G.; Valoti, E. Bioorg. Med. Chem. Lett. 2007, 17,
6192.
36. Ethyl 2-methylmercapto-4-thiazolyl acetate: 1H NMR (CDCl3) d 7.08 (s, 1H),
4.18 (q, J = 3.9 Hz, 2H), 3.78 (s, 2H), 2.68 (s, 3H), 1.24 (t, J = 3.9 Hz, 3H).
37. Compound 17: mp 122 °C; 1H NMR (DMSO-d6) d 7.34 (s, 1H), 3.65 (s, 2H), 2.64
(s, 3H).