Journal of the American Chemical Society
COMMUNICATION
’ REFERENCES
(1) Pacheco, M. C.; Purser, S.; Gouverneur, V. Chem. Rev. 2008,
108, 1943–1981.
(2) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem. Rev. 1993,
93, 1307–1370.
(3) Hollingworth, C.; Hazari, A.; Hopkinson, M. N.; Tredwell, M.;
Benedetto, E.; Huiban, M.; Gee, A. D.; Brown, J. M.; Gouverneur, V.
Angew. Chem., Int. Ed. 2011, 50, 2613–2617.
(4) (a) Singh, R. P.; Shreeve, J. M. Synthesis 2002, 2561–2578.
(b) Boukerb, A.; Grꢀee, D.; Laabassi, M.; Grꢀee, R. J. Fluorine Chem.
1998, 88, 23–27.
(19) For examples where regioselectivity has been tuned by ligand
design, see: (a) Prꢀet^ot, R.; Pfaltz, A. Angew. Chem., Int. Ed. 1998,
37, 323–325. (b) Hayashi, T. Acc. Chem. Res. 2000, 33, 354–362. (c)
Dai, L.-X.; Tu, T.; You, S.-L.; Deng, W.-P.; Hou, X.-L. Acc. Chem. Res.
2003, 36, 659–667.
(20) Trost, B. M.; Machacek, M. R.; Aponick, A. Acc. Chem. Res.
2006, 39, 747–760.
(21) A hydrogen bond has been proposed as a key interaction for
achieving high enantioselectivity with L1: Butts, C. P.; Filali, E.; Lloyd-
Jones, G. C.; Norrby, P.-O.; Sale, D. A.; Schramm, Y. J. Am. Chem. Soc.
2009, 131, 9945–9957.
(22) Clark, J. H. Chem. Rev. 1980, 80, 429–452.
(5) For an example, see: Bresciani, S.; Slawin, A. M. Z.; O’Hagan, D.
J. Fluorine Chem. 2009, 130, 537–543.
(23) Synthesis of 2ꢀ4 using DAST provides 2:1 b:l selectivity.
Fluorinations with PPh3 as ligand provide 2ꢀ6 in <7:1 b:l selectivity.
(24) Allylic bromides were used as substrates when the rate of
reaction and selectivity were inferior with allylic chlorides.
(25) Kabat, M. M.; Radinov, R. Curr. Opin. Drug. Discovery Dev.
2001, 4, 808–833.
(6) Thibaudeau, S.; Gouverneur, V. Org. Lett. 2003, 5, 4891–4893.
(7) For fluorodesilylation of cyclic and non-terminal acyclic
allylsilanes, see: (a) Purser, S.; Wilson, C.; Moore, P. R.; Gouverneur,
V. Synlett 2007, 1166–1168. (b) Giuffredi, G. T.; Purser, S.; Sawicki, M.;
Thompson, A. L.; Gouverneur, V. Tetrahedron: Asymmetry 2009, 20,
910ꢀ920 and references therein.
(26) For other recent examples, see: (a) Zhang, P.; Le, H.; Kyne,
R. E.; Morken, J. P. J. Am. Chem. Soc. 2011, 133, 9716–9719. (b) Trost,
B. M.; Malhotra, S.; Chan, W. H. J. Am. Chem. Soc. 2011, 133,
7328ꢀ7331 and references therein.
(8) For the enantioselective synthesis of tertiary allylic fluorides
using NFSI and a bis-cinchona alkaloid catalyst, see: (a) Ishimaru, T.;
Shibata, N.; Horikawa, T.; Yasuda, N.; Nakamura, S.; Toru, T.; Shiro, M.
Angew. Chem., Int. Ed. 2008, 47, 4157–4161. For a stoichiometric
example, see: (b) Greedy, B.; Paris, J.-M.; Vidal, T.; Gouverneur, V.
Angew. Chem., Int. Ed. 2003, 42, 3291–3294.
(27) To the best of our knowledge, Wacker oxidations of allylic
fluorides are unknown. Michel, B. W.; Camelio, A. M.; Cornell, C. N.;
Sigman, M. S. J. Am. Chem. Soc. 2009, 131, 6076–6077.
(28) For the dihydroxylation of enantioenriched allylic fluorides, see
refs 5, 7b, and: (a) Ahmed, Md. M.; O’Doherty, G. A. Carbohydr. Res.
2006, 341, 1505–1521. (b) Kitade, Y.; Ando, T.; Yamaguchi, T.; Hori,
A.; Nakanishi, M.; Ueno, Y. Bioorg. Med. Chem. 2006, 14, 5578–5583.
(29) For cross-metathesis of racemic allylic fluorides, see: Thibau-
deau, S.; Fuller, R.; Gouverneur, V. Org. Biomol. Chem. 2004,
2, 1110–1112.
(9) Birkholz, M.-N.; Freixa, Z.; van Leeuwen, P. W. N. M. Chem. Soc.
Rev. 2009, 38, 1099–1118.
(10) To the best of our knowledge, the bite angle of L2 has not been
reported. The bite angle of an L1ꢀPt complex has been computationally
estimated at 107°: (a) Ohshima, T.; Miyamoto, Y.; Ipposhi, J.; Nakahara,
Y.; Utsunomiya, M.; Mashima, K. J. Am. Chem. Soc. 2009,
131, 14317–14328. For a crystal structure of a ligand related to L1
and L2, see:(b) Trost, B. M.; Breit, B.; Peukert, S.; Zambrano, J.; Ziller,
J. W. Angew. Chem., Int. Ed. Engl. 1995, 34, 2386–2388.
(30) Beeson, T. D.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005,
127, 8826–8828.
(31) Jiang, H.; Falcicchio, A.; Jensen, K. L.; Paix~ao, M. W.; Bertelsen,
S.; Jørgensen, K. A. J. Am. Chem. Soc. 2009, 131, 7153–7157.
(32) Enantioenriched cyclic α-fluoroketones are accessible by orga-
nocatalysis: Kwiatkowski, P.; Beeson, T. D.; Conrad, J. C.; MacMillan,
D. W. C. J. Am. Chem. Soc. 2011, 133, 1738–1741.
(33) Caires, C. C.; Guccione, S. U.S. Patent Appl. 20100152502,
2010.
(34) Ametamey, S. M.; Honer, M.; Schubiger, P. A. Chem. Rev. 2008,
108, 1501–1516.
(11) Katcher, M. H.; Doyle, A. G. J. Am. Chem. Soc. 2010, 132,
17402–17404.
(12) For reviews, see: (a) Trost, B. M.; Van Vranken, D. L. Chem. Rev.
1996, 96, 395–422. (b) Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258–
297. (c) Trost, B. M.; Zhang, T.; Sieber, J. D. Chem. Sci. 2010, 1, 427–440.
(13) Highly branched-selective allylic substitution can be achieved
with other transition metal catalysts, including Ir, Mo, and Cu (see ref
12); however, we found that these metals provided low regioselectivity
for fluorination with allylic chlorides.
(14) See Supporting Information.
(15) We do not yet fully understand why PPh3 provides superior
selectivity to many of the bidentate ligands in Table 1 and to L2 for
products 13ꢀ15 in Scheme 1. However, π-acceptor ligands have been
shown to induce high b:l selectivity in other Pd-catalyzed allylic
substitution reactions: (a) Åkermark, B.; Zetterberg, K.; Hansson, S.;
Krakenberger, B.; Vitagliano, A. J. Organomet. Chem. 1987, 335, 133–
142. Since PPh3 is a better π-acceptor than many of the bidentate
ligands in Table 1, this electronic effect may account for the higher
regioselectivity. Additionally, the PꢀPdꢀP angle in a [(PPh3)2Pd-
(cinnamyl)]BF4 complex is 104°, similar in magnitude to the larger bite
angles of the bidentate ligands of Table 1: (b) Baize, M. W.; Blosser,
P. W.; Plantevin, V.; Schimpff, D. G.; Gallucci, J. C.; Wojcicki, A.
Organometallics 1996, 15, 164–173.
(16) van Haaren, R. J.; Goubitz, K.; Fraanje, J.; van Strijdonck,
G. P. F.; Oevering, H.; Coussens, B.; Reek, J. N. H.; Kamer, P. C. J.;
van Leeuwen, P. W. N. M. Inorg. Chem. 2001, 40, 3363–3372.
(17) See ref 15a and: (a) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc.
1999, 121, 4545–4554. (b) Trost, B. M.; Ariza, X. J. Am. Chem. Soc. 1999,
121, 10727–10737.
(18) For examples where this selectivity has been overcome with
biased substrates, see: (a) Trost, B. M.; Bunt, R. C.; Lemoine, R. C.;
Calkins, T. L. J. Am. Chem. Soc. 2000, 122, 5968–5976. (b) Trost, B. M.;
Osipov, M.; Dong, G. J. Am. Chem. Soc. 2010, 132, 15800–15807.
15905
dx.doi.org/10.1021/ja206960k |J. Am. Chem. Soc. 2011, 133, 15902–15905