LETTER
Triethyl Borate-Mediated Phosphonylation of Acyltrifluoroacetones
1739
(12) (a) Chizhov, D. L.; Ratner, V. G.; Pashkevich, K. I. Russ.
Chem. Bull. 1999, 48, 758. (b) Yachevskii, D. S.; Chizhov,
D. L.; Ratner, V. G.; Pashkevich, K. I. Russ. Chem. Bull., Int.
Ed. 2001, 50, 1233. (c) Chizhov, D. L.; Pashkevich, K. I.;
Röschenthaler, G.-V. J. Fluorine Chem. 2003, 123, 267.
(d) Chizhov, D. L.; Röschenthaler, G.-V. J. Fluorine Chem.
2006, 127, 235. (e) Sevenard, D. V.; Kazakova, O.; Schoth,
R.-M.; Lork, E.; Chizhov, D. L.; Poveleit, J.; Röschenthaler,
G.-V. Synthesis 2008, 1867.
(16) (a) Mikhailov, B. M. Pure Appl. Chem. 1977, 49, 749.
(b) Kunstle, G.; Siegel, H. DE 2402426, 1975; Chem. Abstr.
1975, 83, 193406. (c) Balaban, A. T.; Rentea, C. N.;
Mocanu, M. Tetrahedron Lett. 1964, 5, 2049.
(d) Chaturvedi, A.; Nagar, P. N.; Srivastava, G. Synth. React.
Inorg. Met.-Org. Chem. 1993, 23, 1599.
(17) Pashkevich, K. I.; Filyakova, V. I.; Ratner, V. G.;
Khomutov, O. G. Russ. Chem. Bull. 1998, 47, 1239; and
references cited therein.
(18) General Procedure for the Preparation of Compounds
8–10
(13) Typical Procedure for the Preparation of Compounds 4–
7
A mixture of diketone 3 (10.0 mmol), phosphorus reagent
[11.0 mmol in the case of diethyl phosphite or
To a vigorously stirred solution of phosphonate 4 or
phosphinate 5 or 6 (5.0 mmol) and dry pyridine (0.79 g, 10
mmol) in dry CH2Cl2 (20 mL) a solution of TFAA (2.10 g,
10 mmol) in dry CH2Cl2 (20 mL) was added dropwise at 0
°C. The reaction mixture was stirred for 4 h at the same
temperature, warmed to r.t., washed with cold H2O (ca. 5 °C,
3 × 10 mL), and filtered through layer of silica (4 sm). The
solvent was evaporated and residue was dried in vacuo for
12 h.
ethyl(methyl)phosphonite, 15 mmol in the case of
ethyl(phenyl)phosphonite, or 20 mmol in the case of
diphenylphosphine oxide], and triethylborate (1.60 g, 11.0
mmol in the case of phosphite and phosphonites or 2.92 g,
20.0 mmol in the case of diphenylphosphine oxide) was
refluxed in MeCN (20 mL) for the respective time (Table 1).
All volatile materials were removed in vacuo, and the
residue was dissolved in Et2O (30 mL). The ether solution
was washed with H2O (10 mL) and 10% solution of Na2CO3
(3 × 10 mL). For compounds 6 and 7 a sat. solution of
NaHCO3 was used. Et2O was removed, the crude product
was dissolved in CHCl3 (10 mL) and filtered through a layer
of silica (3 sm). The solvent was evaporated, and the residue
was dried in vacuo for 12 h. For compounds 6 and 7, the
products were purified by column chromatography (EtOAc–
hexane = 1:2).
Data for Diethyl 3-(4-Nitrophenyl)-3-oxo-1-
(trifluoromethyl)prop-1-enylphosphonate (8b)
Yellow viscous oil; E/Z = 10:1.
Compound (Z)-8b: 1H NMR (200 MHz, CDCl3): d = 1.27 (t,
6 H, 2 Me, J = 7.1 Hz), 4.01–4.17 (m, 4 H, 2 OCH2), 7.57
(dq, 1 H, JH–P = 39.0 Hz, JH–F = 1.5 Hz, =CH), 8.02–8.06 (m,
2 H, Ar), 8.31–8.36 (m, 2 H, Ar). 19F NMR (188 MHz,
CDCl3, C6F6): d = 99.27 (s). 31P–1H coupled (81 MHz,
CDCl3, 85% H3PO4): d = 6.67 (dm, JP–H = 39.0 Hz). 31P–1H
decoupled (81 MHz, CDCl3, 85% H3PO4): d = 6.67 (q,
JP–F = 2.5 Hz). 13C NMR (50 MHz, CDCl3): d = 16.00 (d,
3JC–P = 7.1 Hz, Me), 63.80 (d, 2JC–P = 5.7 Hz, OCH2), 121.65
(qd, CF3, 1JC–F = 275.5 Hz, 2JC–P = 15.5 Hz), 124.06 (CH,
Ar), 129.00 (dq, 1JC–P = 182.3 Hz, 2JC–F = 32.5 Hz), 129.82,
(CH, Ar), 139.48 (Ar), 147.39 (m, =CH), 150.82 (Ar),
190.20 (d, 3JC–P = 7.1 Hz, C=O).
Data for Diethyl 1-Hydroxy-3-(4-nitrophenyl)-3-oxo-1-
(trifluoromethyl)propylphosphonate (4b)
Yellowish viscous oil. 1H NMR (200 MHz, CDCl3): d = 1.23
(t, 3 H, Me, J = 7.1 Hz), 1.27 (t, 3 H, Me, J = 7.1 Hz), 3.21
(dd, 1 H, JHa–Hb = 16.1 Hz, JHa–P = 18.6 Hz, CHH), 3.82 (dd,
1 H, JHa–Hb = 16.1 Hz, JHb–P = 7.3 Hz, CHH), 4.10–4.36 (m,
4 H, 2 OCH2), 6.74 (d, 1 H, JH–P = 8.3 Hz, OH) 7.61–7.66
(m, 2 H, Ar), 7.88–7.93 (m, 2 H, Ar). 19F NMR (188 MHz,
CDCl3, C6F6): d = 88.96 (d, JF–P = 5.2 Hz, CF3). 31P–1H
decoupled (81 MHz, CDCl3, 85% H3PO4): d = 16.68 (q,
JP–F = 5.2 Hz). 13C NMR (50 MHz, CDCl3) d = 16.13 (d,
3JC–P = 5.2 Hz, Me), 38.64 (s, CH2), 63.58 (d, 2JC–P = 7.4 Hz,
OCH2), 63.63 (d, 2JC–P = 7.4 Hz, OCH2), 75.58 (dq,
1JC–P = 164.6 Hz, 2JC–F = 29.0 Hz), 124.41 (qd, CF3, 1JC–
F = 285.4 Hz, 2JC–P = 12.6 Hz), 124.42, (CH, Ar), 130.87
(CH, Ar), 143.03 (Ar), 150.70 (Ar), 195.94 (d, 3JC–P = 8.5
Hz, C=O). Anal. Calcd for C14H17NPF3O7: C, 42.12; H, 4.29;
F, 14.28. Found: C, 42.31; H, 4.17; F, 14.42.
Compound (E)-8b: 1H NMR (200 MHz, CDCl3): d = 1.41 (t,
6 H, 2 Me, J = 7.1 Hz), 4.19–4.35 (m, 4 H, 2 OCH2), 7.77 (d,
1 H, JH–P = 24.0 Hz, =CH), 8.02–8.06 (m, 2 H, Ar), 8.31–
8.36 (m, 2 H, Ar). 19F NMR (188 MHz, CDCl3, C6F6):
d = 104.36 (d, JF–P = 5.5 Hz). 31P–1H decoupled (81 MHz,
CDCl3, 85% H3PO4): d = 9.06 (q, JP–F = 5.2 Hz). 13C NMR
(50 MHz, CDCl3): d = 16.20 (d, 3JC–P = 7.0 Hz, Me), 64.09
(d, 2JC–P = 5.7 Hz, OCH2), 124.26 (CH, Ar), 130.04, (CH,
Ar), 148.66 (m, =CH). Signals of carbon without hydrogen
were not found. Anal. Calcd for C14H15NPF3O6: C, 44.11; H,
3.97; F, 14.95. Found: C, 44.03; H, 3.75; F, 15.10.
(19) Nenajdenko, V. G.; Druzhinin, S. V.; Balenkova, E. S.
Chemistry of a,b-Unsaturated Trifluoromethyl Ketones;
Nova Sci. Publ.: New York, 2007.
(14) Singh, Y. P.; Saxena, S.; Rai, A. K. Synth. React. Inorg.
Met.-Org. Chem. 1982, 12, 867.
(15) (a) Jullien, J.; Pechine, J. M.; Perez, F.; Piade, J. J.
Tetrahedron 1982, 38, 1413. (b) Pavlov, A. M.; Chizhov, D.
L.; Charushin, V. N. Russ. J. Org. Chem. 2005, 41, 1449.
(c) Bonacorso, H. G.; Martins, M. A. P.; Bittencourt, S. R.
T.; Lourega, R. V.; Zanatta, N.; Flores, A. F. C. J. Fluorine
Chem. 1999, 99, 177. (d) Mkrtchyan, E. G.; Yachevskii, D.
S.; Chizhov, D. L.; Charushin, V. N. Russ. Chem. Bull. 2005,
54, 2150.
(20) Dembitsky, V. M.; Al Quntar, A. A. A.; Haj-Yehiaa, A.;
Srebnik, M. Mini-Rev. Org. Chem. 2005, 2, 91.
(21) (a) Kenyon, G. L.; Westheimer, F. N. J. Am. Chem. Soc.
1966, 88, 3557. (b) Costisella, B.; Keitel, I.; Gross, H.
Tetrahedron 1981, 37, 1227.
Synlett 2011, No. 12, 1735–1739 © Thieme Stuttgart · New York