4
Tetrahedron
b Major diastereomer depicted.
(k) Canlas, G. M. R.; Gilbertson, S. R. Chem. Commun. 2014, 50, 5007-
5010.
In summary, cobalt-based catalysts promoted the intramolecular
[4+2] cycloaddition of dienynes. An important difference has
been noticed as a function of substrates structure. With dienynes
containing a terminal alkyne moiety, reactions performed without
catalyst gave the expected cycloadducts along with substantial
amounts of products resulting from their dehydrogenation. The
use of a cobalt salt as catalyst; here the best was found to be sole
Co(OAc)2; improved slightly the yields of [4+2] cycloadducts but
made reactions cleaner by lowering the oxidation process
whereas unwanted resulting dimerization16 can be circumvent by
the use of degassed solvents. With dienynes possessing a
substituent on the alkyne pattern, no reaction occurred without
cobalt and even ZnI2 as Lewis acid was required to activate the
catalyst. Once again, the nature of the tether as well as the one of
the substituents on both alkyne and diene moieties were found to
strongly influence the outcome of the highly diastereoselective
[4+2] cycloadditions. The development of more active cobalt-
based catalysts is currently underway in our laboratory.
9. Shibata, T.; Takasaku, K.; Takesue, Y.; Hirata, N.; Takagi, K. Synlett
2002, 1681-1682.
10. Kim, S. M.; Park, J. H.; Chung, Y. K. Chem. Commun. 2011, 47, 6719-
6721.
11. (a) Röse, P.; Hilt, G. Synlett 2016, 48, 463-492; (b) Amatore, M.; Aubert,
C.; Malacria, M.; Petit, M. In Science of Synthesis, Vol. 1 Update 2012/3,
Pliekter, B., Ed.; Thieme: Stuttgart, 2012, 1-121; (c) Hess, W.,
Treutwein, J.; Hilt, G. Synthesis 2008, 22, 3537-3562.
12. For selected examples, see: (a) Kuttner, J. R.; Warratz, S.; Hilt, G.
Synthesis 2012, 44, 1293-1303; (b) Pünner, F.; Hilt, G. Chem. Commun.
2012, 48, 3617-3619; (c) Hilt, G.; Hengst, C. J. Org. Chem. 2007, 72,
7337-7342; (d) Hilt, G.; Lüers, S.; Harms, K. J. Org. Chem. 2004, 69,
624-630.
13. [4+2] cycloadducts were observed as side products in intramolecular
Pauson-Khand reactions of dienynes, see: (a) Park, K. H.; Choi, S. Y.;
Kim, S. Y.; Chung, Y. K. Synlett 2006, 527-532; (b) Choi, S. Y.; Lee, S.
I.; Park, K. H.; Chung, Y. K. Synlett 2007, 1857-1862; For an
unsuccessful attempt, see reference 8e.
14. (a) Achard, M.; Tenaglia, A.; Buono, G. Org. Lett. 2005, 7, 2353–2356;
(b) Toselli, N.; Martin, D.; Achard, M.; Tenaglia, A.; Bürgi, T.; Buono,
G. Adv. Synth. Catal. 2008, 350, 280-286; (c) Clavier, H. Le Jeune, K.;
De Riggi, E.; Tenaglia, A.; Buono, G. Org. Lett. 2011, 13, 308-311.
15. Lower diastereomeric ratios were observed with substrates containing
little impurities.
Acknowledgments
This work was supported by the Ministère de l’Enseignement
Supérieur et de la Recherche (B. B. Ph.D. grant), the CNRS,
AMU, and Centrale Marseille.
16. For a more detailed discussion on the formation of dimers using
rhodium-based catalysts, see: reference 8b.
17. See the supporting information.
18. For a rare example of thermal intramolecular [4+2] cycloaddition of
dienyne, see: Karabiyikoglu, S.; Merlic, C. A. Org. Lett. 2015, 17, 4086-
489.
Supplementary Material
Supplementary data associated with this article can be found,
in the online version, at.
References and notes
1. For reviews reporting applications in synthesis, see: (a) Stathakis, C. I.;
Gkizis, P. L.; Zografos, A. L. Nat. Prod. Rep. 2016, 33, 1093-1117; (b)
Ardkhean, R.; Caputo, D. F. J.; Morrow, S. M.; Shi, H.; Xiong, Y.;
Anderson, E. A. Chem. Soc. Rev. 2016, 45, 1557-1569; (c) Fensterbank,
L.; Malacria, M. Acc. Chem. Res. 2014, 47, 953-965; (d) Rudolph, M.;
Hashmi, A. S. K. Chem. Soc. Rev. 2012, 37, 2448-2462; (e) Furstner, A.
Chem. Soc. Rev. 2009, 38, 3208–3221; (f) Nicolaou, K. C.; Snyder, S.
A.; Montagnon, T.; Vassilikogiannakis, G.; Angew. Chem. Int. Ed. 2002,
41, 1668-1698.
2. (a) Trost, B. M. Acc. Chem. Res. 2002, 35, 695–705; (b) Trost, B. M.
Angew. Chem. Int. Ed. 1995, 34, 259–281; (c) Trost, B. M. Science 1991,
254, 1471–1477.
3. For reviews on transition metal catalyzed cycloisomerisations, see: (a)
Dorel, R.; Echavarren, A. M. Chem. Rev. 2015, 115, 9028-9072; (b)
Obradors, C.; Echavarren, A. M.; Acc. Chem. Res. 2014, 47, 902-912; (c)
Yamamoto, Y. Chem. Rev. 2012, 112, 4736–4769; (d) Michelet, V.;
Toullec, P. Y.; Genêt, J.-P. Angew. Chem. Int. Ed. 2008, 47, 4268-4315;
(e) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813-834.
4. For asymmetric processes, see: (a) Marinetti, A.; Jullien, H.; Voituriez,
A. Chem. Soc. Rev. 2012, 41, 4884-4908; (b) Watson, I. D. G.; Toste, F.
D. Chem. Sci. 2012, 3, 2899-2919; (c) Fairlamb, I. J. S. Angew. Chem.
Int. Ed. 2004, 43, 1048-1052.
5. Wender, P. A.; Jenkins, T. E. J. Am. Chem. Soc. 1989, 111, 6432-6434.
6. Jolly, R. S.; Luedtke, G.; Sheehan, D.; Livinghouse, T. J. Am. Chem.
Soc. 1990, 112, 4965-4966.
7. McKinstry, L.; Livinhouse, T. Tetrahedron 1994, 50, 6145-6154.
8. (a) Gilbertson, S. R.; Hoge, G. S. Tetrahedron Lett. 1998, 39, 2075-2078;
(b) Gilbertson, S. R.; Hoge, G. S.; Genov, D. G. J. Org. Chem. 1998, 63,
10077-10080; (c) Wang, B.; Cao, P.; Zhang, X. Tetrahedron Lett. 1998,
39, 2075-2078; (d) Motoda, D.; Kinoshita, H.; Shinokubo, H.; Oshima,
K. Angew. Chem. Int. Ed. 2004, 43, 1860-1862; (e) Yoo, W.-J.; Allen,
A.; Villeneuve, K.; Tam, W. Org. Lett. 2005, 7, 5853-5856; (f) DeBoef,
B.; Counts, W. R.; Gilbertson, S. R. J. Org. Chem. 2007, 72, 799-804;
(g) Aikawa, K.; Akutagawa, S.; Mikami, K. J. Am. Chem. Soc. 2006,
128, 12648-12649; (h) Shintani, R.; Sannohe, Y.; Tsuji, T.; Hayashi, T.
Angew. Chem. Int. Ed. 2007, 46, 7277-7280; (i) Lee, S. I.; Park, S. Y.;
Park, J. H.; Chung, Y. K.; Han, J. W. Bull. Korean Chem. Soc. 2007, 28,
1919-1920; (j) Gómez, Kamber, N. E.; Deschamps, N. M. Cole, A. P.;
Wender, P. A.; Waymouth, R. M. Organometallics 2007, 26, 4541-4545;