F
I. Medina-Mercado et al.
Paper
Synthesis
Cycloaddition Reaction of 1,3-Diazabutadienium Trifluoroacetate
7e with Phenylacetyl Chloride
Funding Information
The Consejo Nacional de Ciencia y Tecnologia is gratefully acknowl-
edged for providing a M.Sc. fellowship to Ignacio Medina (CONACyT
581817 and grant S-26659).
Under a nitrogen atmosphere, Et3N (0.68 mL, 4.87 mmol, 6.0 equiv)
and phenylacetyl chloride (0.21 mL, 1.59 mmol, 2.0 equiv) were add-
ed dropwise at 0 °C to a solution of 1,3-diazabutadienium trifluoroac-
etate (generated from 220 mg of 2e) in anhydrous CH2Cl2 (5.0 mL).
The reaction was stirred at r.t. for 2 h. After this time, two products
were observed by TLC analysis (8 and 9) and the mixture reaction was
washed with saturated NH4Cl solution (10.0 mL) and the product was
extracted with CH2Cl2 (3 × 15.0 mL). The organic phase was dried over
Na2SO4 and the solvent was evaporated under vacuum. The product
was purified by column chromatography (silica gel, using hexanes–
EtOAc 9:1).
C
o
nsoe
j
N
a
ocin
a
l
de
Ceinaci
y
Te
c
n
o
lga
i
C(
O
N
A
C
y
T
5
8
1
8
1
7
C)
o
nsoe
j
N
a
ocin
a
l
de
Ceinaci
y
Te
c
n
o
lga
i
S(-2
6
6
5
9)
Acknowledgment
The authors wish to thank María de las Nieves Zavala Segovia, M Sc.
(CCIQS UNAM-UAEM) for obtaining NMR spectra and M. Sc. Lizbeth
Triana Cruz for obtaining mass spectra.
Supporting Information
6-Methyl-5-phenyl-2-trifluoromethylpyrimidin-4(3H)-one (8)
Supporting information for this article is available online at
Yield: 55.6 mg (28%); white solid; mp 177–179 °C (CH2Cl2–hexanes).
1H NMR (300 MHz, CDCl3): δ = 7.47–7.41 (m, 3 H), 7.32–7.26 (m, 2 H),
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
o
nrtogI
f
rmoaitn
2.36 (s, 3 H).
13C NMR (125 MHz, CDCl3): δ = 164.34, 163.83, 147.83 (q, J = 38.3 Hz),
131.88, 129.55, 128.59, 128.53, 126.21, 117.94 (q, J = 276.4 Hz), 22.74.
19F NMR (282 MHz, CDCl3): δ = –70.75.
References
(1) Smart, B. E. J. Fluorine Chem. 2001, 109, 3.
(2) (a) Harsanyi, A.; Sandford, G. Green Chem. 2015, 17, 2081.
(b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem.
Soc. Rev. 2008, 37, 320. (c) Hagmann, W. K. J. Med. Chem. 2008,
51, 4359. (d) Kirk, K. L. J. Fluorine Chem. 2006, 127, 1013.
(e) Salas, P. F.; Herrmann, C.; Orvig, C. Chem. Rev. 2013, 113,
3450.
MS: m/z (%) = 254 (97) [M+], 253 (100), 233 (45), 89 (45).
6-Methyl-5-phenyl-2-trifluoromethylpyrimidin-4-yl-2-phenylac-
etate (9)
Yield: 46 mg (20%); white solid; mp 137–140 °C (CH2Cl2–hexanes).
(3) Wiehn, M. S.; Vinogradova, E. V.; Togni, A. J. Fluorine Chem.
2010, 131, 951.
(4) Alonso, C.; Martínez De Marigorta, E.; Rubiales, G.; Palacios, F.
Chem. Rev. 2015, 115, 1847.
(5) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem. Int. Ed. 2013,
52, 8214.
(6) Zhu, W.; Wang, J.; Wang, S.; Gu, Z.; Aceña, J. L.; Izawa, K.; Liu, H.;
Soloshonok, V. A. J. Fluorine Chem. 2014, 167, 37.
(7) Ma, J. A.; Cahard, D. J. Fluorine Chem. 2007, 128, 975.
(8) Barone, J. A.; Peters, E.; Tieckelmann, H. J. Org. Chem. 1959, 24,
198.
1H NMR (300 MHz, CDCl3): δ = 7.40–7.35 (m, 3 H), 7.23–7.21 (m, 3 H),
7.14–7.11 (m, 2 H), 6.94–6.93 (m, 2 H), 3.60 (s, 2 H), 2.47 (s, 3 H).
13C NMR (75 MHz, CDCl3): δ = 170.12, 167.16, 162.58, 154.21 (q, J =
37.5 Hz), 131.08, 130.26, 128.64, 128.43, 128.22, 128.07, 127.97,
127.86, 126.58, 118.35 (q, J = 275.7 Hz), 39.90, 22.10.
19F NMR (282 MHz, CDCl3): δ = –70.27.
MS: m/z (%) = 254 (56), 253 (57), 136 (100), 92 (69), 65 (65).
4-Chloro-6-methyl-5-phenyl-2-trifluoromethylpyrimidine (10)
POCl3 (2.0 mL, 21.8 mmol, 10.0 equiv) was added to the crude mix-
ture of 8 and 9 in toluene (5.0 mL) and the mixture was heated at re-
flux for 12 h. After this time, the solvent and residual POCl3 were
evaporated under vacuum and the residue was washed with saturat-
ed NaHCO3 solution (30.0 mL), and the product was extracted with
CH2Cl2 (5 × 10 mL). The organic phase was dried over Na2SO4 and the
solvent was removed under vacuum. The product was purified by col-
umn chromatography (silica gel, hexanes–EtOAc 9:1) to give 10.
(9) Inoue, S.; Saggiomo, A. J.; Nodiff, E. A. J. Org. Chem. 1961, 26,
4504.
(10) Kawase, M.; Hirabayashi, M.; Salto, S.; Yamamoto, K. Tetrahe-
dron Lett. 1999, 40, 2541.
(11) Soufyane, M.; Mirand, C.; Lévy, J. Tetrahedron Lett. 1993, 34,
7737.
(12) Mirand, C.; Soufyane, M.; van den Broek, S.; Khamliche, L. Het-
erocycles 1999, 51, 2445.
(13) Berber, H.; Soufyane, M.; Mirand, C.; Schmidt, S.; Aubertin, A. M.
Tetrahedron 2001, 57, 7369.
Yield: 0.1196 g (40% from 6); white solid; mp 73–74 °C (CH2Cl2–hex-
anes).
(14) Berber, H.; Soufyane, M.; Santillana-Hayat, M.; Mirand, C. Tetra-
hedron Lett. 2002, 43, 9233.
(15) Ondi, L.; Lefebvre, O.; Schlosser, M. Eur. J. Org. Chem. 2004, 3714.
(16) Takahashi, M.; Akiyama, K.; Suzuki, T.; Inoue, H. J. Heterocycl.
Chem. 2008, 45, 601.
1H NMR (300 MHz, CDCl3): δ = 7.54–7.52 (m, 3 H), 7.26–7.24 (m, 2 H),
2.45 (s, 3 H).
13C NMR (75 MHz, CDCl3): δ = 168.86, 160.94, 154.38 (q, J = 37.9 Hz),
135.60, 133.08, 128.95, 128.82, 128.25, 118.65 (q, J = 275.9 Hz), 23.29.
19F NMR (282 MHz, CDCl3): δ = –70.35.
(17) Sukach, V. A.; Tkachuk, V. M.; Rusanov, E. B.; Röschenthaler, G.
V.; Vovk, M. V. Tetrahedron 2012, 68, 8408.
MS: m/z (%) = 274 (32) [M++2], 272 (100) [M+], 140 (54), 115 (52), 69
(18) Boger, D. L. Tetrahedron 1983, 39, 2869.
(19) Jayakumar, S.; Ishar, M. P. S.; Mahajan, M. P. Tetrahedron 2002,
58, 379.
(66).
(20) Matsuda, I.; Yamamoto, S.; Ishii, Y. J. Chem. Soc., Perkin Trans. 1
1976, 1528.
(21) Mazumdar, S. N.; Mukherjee, S.; Sharma, A. K.; Sengupta, D.;
Mahajan, M. P. Tetrahedron 1994, 50, 7579.
© Georg Thieme Verlag Stuttgart · New York — Synthesis 2018, 50, A–G