ACS Medicinal Chemistry Letters
LETTER
(7) Walsh, C. Antibiotics: Actions, Origins, Resistance; ASM Press:
Washington, DC, 2003.
carbohydrates with inversion of configuration—3. J. Chem. Soc., Perkin
Trans. 1 1982, 681–3.
(8) Carter, A. P.; Clemons, W. M.; Brodersen, D. E.; Morgan-
Warren, R. J.; Wimberly, B. T.; Ramakrishnan, V. Functional insights
from the structure of the 30S ribosomal subunit and its interactions with
antibiotics. Nature 2000, 407, 340–8.
(9) Ogle, J. M.; Ramakrishnan, V. Structural insights into transla-
tional fidelity. Annu. Rev. Biochem. 2005, 74, 129–77.
(28) See the Supporting Information for protocol details and HPLC
purity reports.
(29) Kondo, J.; Pachamuthu, K.; Francois, B.; Szychowski, J.; Hanessian,
S.; Westhof, E. Crystal structure of the bacterial ribosomal decoding site
complexed with a synthetic doubly functionalized paromomycin derivative: a
new specific binding mode to an a-minor motif enhances in vitro antibacterial
activity. ChemMedChem 2007, 2, 1631–8.
(30) Paulsen, H.; Jansen, R. Units of oligosaccharides. Part XXVI.
Synthesis of a modified sisomicin with D-ribofuranose component.
Carbohydr. Res. 1981, 92, 305–9.
(10) Francois, B.; Russell, R. J.; Murray, J. B.; Aboul-ela, F.;
Masquida, B.; Vicens, Q.; Westhof, E. Crystal structures of complexes
between aminoglycosides and decoding A site oligonucleotides: role of
the number of rings and positive charges in the specific binding leading
to miscoding. Nucleic Acids Res. 2005, 33, 5677–90.
(11) Gromadski, K. B.; Rodnina, M. V. Kinetic determinants of high-
fidelity tRNA discrimination on the ribosome. Mol. Cell 2004, 13, 191–200.
(12) Wilson, D. N. The A-Z of bacterial translation inhibitors. Crit.
Rev. Biochem. Mol. Biol. 2009, 44, 393–433.
(13) Magnet, S.; Blanchard, J. S. Molecular insights into aminoglyco-
side action and resistance. Chem. Rev. 2005, 105, 477–98.
(14) Kim, H. B.; Jang, H. C.; Nam, H. J.; Lee, Y. S.; Kim, B. S.; Park,
W. B.; Lee, K. D.; Choi, Y. J.; Park, S. W.; Oh, M. D.; Kim, E. C.; Choe,
K. W. In vitro activities of 28 antimicrobial agents against Staphylococcus
aureus isolates from tertiary-care hospitals in Korea: a nationwide survey.
Antimicrob. Agents Chemother. 2004, 48, 1124–7.
(15) Schmitz, F.-J.; Fluit, A. C.; Gondolf, M.; Beyrau, R.; Lindenlauf,
E.; Verhoef, J.; Heinz, H.-P.; Jones, M. E. The prevalence of aminoglyco-
side resistance and corresponding resistance genes in clinical isolates of
staphylococci from 19 european hospitals. J. Antimicrob. Chemother.
1999, 43, 253–259.
(31) CLSI. Methods for dilution antimicrobial susceptibility tests for
bacteria that grow aerobically; approved standard, 7th ed. CLSI document
M7-A7; Clinical and Laboratory Standards Institute: Wayne, PA, 2006.
(32) CLSI. Performance standards for antimicrobial susceptibility
testing; 17th informational supplement. CLSI document M100-S18;
Clinical and Laboratory Standards Institute: Wayne, PA, 2008.
(33) Haskell, T. H.; Hanessian, S. The configuration of paromose.
J. Org. Chem. 1963, 28, 2598–604.
(34) Fong, D. H.; Berghuis, A. M. Structural basis of APH(30)-IIIa-
mediated resistance to N1-substituted aminoglycoside antibiotics. Anti-
microb. Agents Chemother. 2009, 53, 3049–55.
(35) Fong, D. H.; Berghuis, A. M. Substrate promiscuity of an
aminoglycoside antibiotic resistance enzyme via target mimicry. EMBO
J. 2002, 21, 2323–31.
(16) Shaw, K. J.; Rather, P. N.; Hare, R. S.; Miller, G. H. Molecular
genetics of aminoglycoside resistance genes and familial relationships
of the aminoglycoside-modifying enzymes. Microbiol. Rev. 1993, 57,
138–63.
(17) Price, K. E. The potential for discovery and development of
improved aminoglycosides. Am. J. Med. 1986, 80, 182–9.
(18) Battistini, C.; Franceschi, G.; Zarini, F.; Cassinelli, G.; Arcamone,
F. Semi-synthetic aminoglycoside antibiotics. 4. 30,40-dideoxyparomo-
mycin and analogs. J. Antibiot. (Tokyo)
(19) Torii, T.; Tsuchiya, T.; Umezawa, S. Syntheses of 5-O-[2-O-
and 3-O-(6-amino-6-deoxy-β-L-idopyranosyl)-β-D-ribofuranosyl]-1-
N-[(S)-4-amino-2-hydroxybutanoyl]-30-deoxyparomamine. J. Antibiot.
1982, 35, 58–61.
(20) Nishimura, T.; Tsuchiya, T.; Umezawa, S.; Umezawa, H. A syn-
thesis of 30,40-dideoxykanamycin B. Bull. Chem. Soc. Jpn. 1977, 50, 1580–3.
(21) Matsuno, T.; Yoneta, T.; Fukatsu, S.; Umemura, E. An im-
proved synthesis of 30,40-dideoxykanamycin B. Carbohydr. Res. 1982,
109, 271–5.
(22) Rai, R.; Chen, H. N.; Chang, H.; Chang, C. W. T. Novel method
for the synthesis of 30,40-dideoxygenated pyranmycin and kanamycin
compounds, and studies of their antibacterial activity against aminogly-
coside-resistant bacteria. J. Carbohydr. Chem. 2005, 24, 131–43. 1982,
35, 98–101.
(23) Hanessian, S.; Pachamuthu, K.; Szychowski, J.; Giguꢀere, A.;
Swayze, E. E.; Migawa, M. T.; Franc-ois, B.; Kondo, J.; Westhof, E.
Structure-based design, synthesis and A-site rRNA co-crystal complexes
of novel amphiphilic aminoglycoside antibiotics with new binding
modes—a synergistic hydrophobic effect against resistant bacteria.
Bioorg. Med. Chem. Lett. 2010, 20, 7097–101.
(24) Naito, T.; Nakagawa, S. Paromomycin antibiotic derivatives.
U.S. Patent 3,897,412, July 29, 1975.
(25) Garegg, P. J.; Samuelsson, B. Conversion of vicinal diols into
olefins using triphenylphosphine and triiodoimidazole. Synthesis 1979,
No. 10, 813–4.
(26) Garegg, P. J.; Johansson, R.; Samuelsson, B. Introduction of 3,4-
unsaturation in 2-amino-2-deoxy-D-glucopyranosides. J. Carbohydr. Chem.
1984, 3 (2), 189–95.
(27) Garegg, P. J.; Johansson, R.; Ortega, C.; Samuelsson, B. Novel
reagent system for converting a hydroxy-group into an iodo-group in
928
dx.doi.org/10.1021/ml200202y |ACS Med. Chem. Lett. 2011, 2, 924–928