131.7, 131.6, 130.6, 130.4, 130.2, 129.8, 129.3, 128.7, 128.1, 127.9,
127.8, 127.3, 127.2, 126.7, 125.4, 125.3, 124.8, 121.8, 120.9, 119.8,
47.2, 27.4; FT-IR (ATR, cmꢀ1): 2970, 1739, 1428, 1374, 1108,
817, 744, 699; MS (FAB+, m/z): 780 [M+]; Anal. Calcd: C, 90.73;
H, 5.68. Found: C, 89.6; H, 5.85%.
Acknowledgements
This research was supported by Basic Science Research Program
through the NRF funded by the Ministry of Education, Science
and Technology (20110004655).
(9,10-Diphenylanthracen-2-yl)triphenylsilane
(DPA-2TPS).
Notes and references
1
Yield: 55%, H NMR (300 MHz, CDCl3): d (ppm) 7.94 (s, 1H),
7.74–7.67 (m, 3H), 7.61–7.52 (m, 4H), 7.50–7.47 (m, 8H), 7.39
(dd, J ¼ 2.4 Hz, 6.6 Hz, 5H), 7.36–7.28 (m, 10H), 7.26–7.25 (m,
1H); 13C NMR (75 MHz, CDCl3): d (ppm) 138.1, 136.5, 134.2,
131.6, 131.3, 130.5, 129.7, 129.4, 128.6, 128.4, 128.0, 127.7, 127.4,
127.2, 125.9, 125.5, 125.2; FT-IR (ATR, cmꢀ1): 2970, 2948, 1739,
1366, 1217, 1033, 760, 746, 697 cmꢀ1; MS (EI+, m/z): 589 [M+ H];
Anal. Calcd: C, 89.75; H, 5.48. Found: C, 87.4; H, 5.92.
1 C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett., 1987, 51, 913.
2 M. A. Baldo, M. E. Thompson and S. R. Forrest, Nature, 2000, 403,
750.
3 S. R. Forrest, Nature, 2001, 428, 911.
4 J. K. Park, K. H. Lee, S. Kang, J. Y. Lee, J. S. Park, J. H. Seo,
Y. K. Kim and S. S. Yoon, Org. Electron., 2010, 11, 905.
5 K. H. Lee, J. H. Seo, Y. K. Kim and S. S. Yoon, J. Nanosci.
Nanotechnol., 2009, 9, 7099.
6 K. H. Lee, S. M. Kim, J. Y. Kim, Y. K. Kim and S. S. Yoon, Bull.
Korean Chem. Soc., 2010, 31, 2884.
7 K. H. Lee, L. K. Kang, J. Y. Lee, S. Kang, S. O. Jeon, K. S. Yook,
J. Y. Lee and S. S. Yoon, Adv. Funct. Mater., 2010, 20, 1345.
8 K. T. Wong, Y. Y. Chien, R. T. Chen, C. F. Wang, Y. T. Lin,
H. H. Chiang, P. Y. Hsieh, C. C. Wu, C. H. Chou, Y. O. Su,
G. H. Lee and S. M. Peng, J. Am. Chem. Soc., 2002, 124, 11576.
9 J. Luo, Y. Zhou, Z. Q. Niu, Q. F. Zhou, Y. G. Ma and J. Pei, J. Am.
Chem. Soc., 2007, 129, 11314.
4,4,5,5-Tetramethyl-2-(9,9-dimethyl-2-(triphenylsilyl)-9H-flu-
oren-7-yl)-1,3,2-dioxaborolane (B). To (2-bromo-9,9-dimethyl-
9H-fluoren-7-yl)triphenylsilane (1.4 g, 2.64 mmol) in anhydrous
THF (40 mL) was added n-BuLi (1.9 mL of a 1.6 M solution in
hexane, 4.74 mmol) within 30 min at ꢀ78 ꢁC. After an additional
hour,
2-isopropoxy-4,4,5,5,-tetramethyl-1,3,2-dioxaborolane
10 Y. H. Kim, D. C. Shin, S. H. Kim, C. H. Ko, H. S. Yu, Y. D. Chae
and S. K. Kwon, Adv. Mater., 2001, 13, 1690.
(0.8 mL, 3.96 mmol) was added and reaction mixture and
allowed to warm to room temperature. Water was the added,
followed by the usual extractive workup with ethyl acetate. The
combined organic layers were dried with anhydrous MgSO4,
filtered, and evaporated to dryness. The crude product was
purified by column chromatography with silica gel using ethyl
acetate/hexane (1 : 20, v/v), affording a white solid at yield of 860
11 S. J. Lee, J. S. Park, K. J. Yoon, Y. I. Kim, S. H. Jin, S. K. Kang,
Y. S. Gal, S. W. Kang, J. Y. Lee, J. W. Kang, S. H. Lee,
H. D. Park and J. J. Kim, Adv. Funct. Mater., 2008, 18, 3922.
12 Y. H. Kim, H. C. Jeong, S. H. Kim, K. Yang and S. K. Kwon, Adv.
Mater., 2001, 13, 1690.
13 S.-K. Kim, B. Yang, Y. Ma, J.-H. Lee and J.-W. Park, J. Mater.
Chem., 2008, 18, 3376.
14 Y.-Y. Lyu, J. Kwak, O. Kwon, S.-H. Lee, D. Kim, C. Lee and
K. Char, Adv. Mater., 2008, 20, 2720.
1
mg (57%). H NMR (300 MHz, CDCl3): d (ppm) 7.87 (s, 1H),
15 P. I. Shih, C. Y. Ghuang, C. H. Chien, E. W. G. Daiu and C. F. Shu,
Adv. Funct. Mater., 2007, 17, 3141.
16 K. H. Lee, J. N. You, H. J. Kwon, Y. K. Kim and S. S. Yoon, Mol.
Cryst. Liq. Cryst., 2010, 530, 48.
17 I. B. Berlan, Handbook of Fluorescence Spectra of Aromatic
Molecules, Academic Press, New York, 2nd edn, 1971.
18 M. D. Joswick, I. H. Campbell, N. N. Barashkov and J. P. Ferraris, J.
Appl. Phys., 1996, 80, 2883.
19 B. E. Konne, D. E. Loy and M. E. Thompson, Chem. Mater., 1998,
10, 2235.
7.80–7.79 (m, 1H), 7.74 (dd, J ¼ 2.5, 7.4 Hz, 2H), 7.65–7.59 (m,
7H), 7.53 (dd, J ¼ 0.8, 7.6 Hz, 1H), 7.44–7.85 (m, 9H), 1.44 (s,
6H), 1.38 (s, 12H); 13C NMR (75 MHz, CDCl3): d (ppm) 153.8,
153.4, 142.2, 140.7, 136.7, 135.5, 134.7, 134.1, 133.8, 130.7, 129.8,
129.0, 128.1, 120.1, 119.9, 84.1, 47.1, 27.3, 25.2; FT-IR (ATR,
cmꢀ1): 2972, 1461, 1423, 1356, 1144, 1108, 959, 907, 704; MS
(EI+, m/z):578 [M+].
20 K. H. Lee, Y. S. Kwon, L. K. Kang, G. Y. Kim, J. H. Seo, Y. K. Kim
and S. S. Yoon, Synth. Met., 2009, 159, 2603.
OLED fabrication and measurement
21 J. H. Seo, K. H. Lee, B. M. Seo, J. R. Koo, S. J. Moon, J. K. Park,
S. S. Yoon and Y. K. Kim, Org. Electron., 2010, 11, 1605.
22 T.-W. Lee, T. Noh, B.-K. Choi, M.-S. Kim, D. W. Shin and J. Kido,
Appl. Phys. Lett., 2008, 92, 043301.
23 T.-W. Lee, O. O. Park, H. N. Cho, J.-M. Hong, C. Y. Kim and
Y. C. Kim, Synth. Met., 2001, 122, 437.
To fabricate the OLEDs, 100 nm thick indium-tin-oxide (ITO)
thin films (sheet resistivity ¼ 30 U) on glass substrates were used.
The ITO-coated glass was cleaned in an ultrasonic bath in the
following sequence: acetone, methyl alcohol, distilled water. The
substrates were then stored in isopropyl alcohol for 48 h and
dried with a N2 gas gun. The substrates were treated with O2
plasma under 1.96 ꢂ 10ꢀ1 Pa at 125 W for 2 min.31 All organic
materials and metals were deposited under high vacuum (6.70 ꢂ
10ꢀ5 Pa). The OLEDs were fabricated in the following sequence:
€
24 J. Salbeck, F. Weissortel, N. Yu, J. Baner and H. Bestgen, Synth.
Met., 1997, 91, 209.
25 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, Jr,
K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi,
V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,
G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian,
J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts,
R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli,
J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth,
P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich,
A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz,
Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov,
G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin,
D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng,
A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson,
ITO/4,40-bis(N-(1-naphthyl)-N-phenylamino)biphenyl
(NPB)
(50 nm)/blue-emitting materials (30 nm)/4,7-diphenyl-1,10-phe-
nanthroline (Bphen) (30 nm)/lithium quinolate (Liq) (2 nm)/Al
(100 nm), NPB as the hole-transporting layer, Bphen as the
electron-transporting layer, and Liq:Al as the composite
cathode. The current density (J), luminance (L), luminous effi-
ciency (LE), and CIE chromaticity coordinates of the OLEDs
were measured using a Keithley 2400, Chroma meter CS-1000A.
The electroluminance was measured using a Roper Scientific
Pro 300i.
This journal is ª The Royal Society of Chemistry 2011
J. Mater. Chem., 2011, 21, 13640–13648 | 13647