10.1002/anie.201800787
Angewandte Chemie International Edition
COMMUNICATION
4953; b) H. Lv, W.-Q. Jia, L.-H. Sun, S. Ye, Angew. Chem. Int. Ed. 2013,
52, 8607–8610; c) J. Izquierdo, A. Orue, K. A. Scheidt, J. Am. Chem.
Soc. 2013, 135, 10634–10637; d) H. Hu, Y. Liu, J. Guo, L. Lin, Y. Xu, X.
Liu, X. Feng, Chem. Comm. 2015, 51, 3835–3837; e) A. Lee, K. A.
Scheidt, Chem. Comm. 2015, 51, 3407–3410; f) L. Caruana, M. Monda-
tori, V. Corti, S. Morales, A. Mazzanti, M. Fochi, L. Bernardi, Chem. Eur.
J. 2015, 21, 6037–6041; g) Y. Wang, J. Pan, J. Dong, C. Yu, T. Li, X.-S.
Wang, S. Shen, C. Yao, J. Org. Chem. 2017, 82, 1790–1795; h) N.
Meisinger, L. Roiser, U. Monkowius, M. Himmelsbach, R. Robiette, M.
Waser, Chem. Eur. J. 2017, 23, 5137–5142.
imine formation and ADAR efficiently while delivering the products
with comparable results. Beyond that, the obtained oxazinoquin-
olines opened up the possibility of further functionalization toward
highly substituted tetrahydroquinolines.
Acknowledgements
We thank the Deutsche Forschungsgemeinschaft (SCHN
441/11-2) for the generous financial support of this work. Martin
Kretzschmar is grateful for a predoctoral fellowship from the
Deutsche Bundesstiftung Umwelt (DBU), and we thank Michael
Laue for preliminary experiments.
[6]
Select additional N-heterocycle syntheses via ortho-quinone methide
imines: a) C. Wang, J. A. Tunge, J. Am. Chem. Soc. 2008, 130, 8118–
8119; b) Q. Q. Yang, C. Xiao, L. Q. Lu, J. Au, F. Tan, B. J. Li, W. J. Xiao,
Angew. Chem. 2012, 124, 9271–9274; Angew. Chem. Int. Ed. 2012, 51,
9137–9140; c) Q. Q. Yang, Q. Wang, J. An, J. R. Chen, L. Q. Lu, W. Q.
Xiao, Chem. Eur. J. 2013, 19, 8401-8404; d) A. Lee, A. Younai, C. K.
Price, J. Izquierdo, R. K. Mishra, K. A. Scheidt, J. Am. Chem. Soc. 2014,
136, 10589–10592; e) M. T. Hovey, C. T. Check, A. F. Sipher, K. A.
Scheidt, Angew. Chem. 2014, 126, 9757–9761; Angew. Chem. Int. Ed.
2014, 53, 9603–9607; f) G. Li, H. Liu, G. Lv, Y. Wang, Q. Fu, Z. Tang,
Org. Lett. 2015, 17, 4125–4127; g) G. Zhan, M. L. Shi, Q. He, W. Du, Y.
C. Chen, Org. Lett. 2015, 17, 4750–4753; h) R. K. Saunthwal, M. Patel,
A. K. Verma, J. Org. Chem. 2016, 81, 6563−6572; i) R. K. Saunthwal, M.
Patel, A. K. Verma, Org. Lett. 2016, 18, 2200-2203; j) L. Wang, S. Li, M.
Blümel, A. R. Philipps, A. Wang, R. Puttreddy, K. Rissanen, D. Enders,
Angew. Chem. 2016, 128, 11276-11280; Angew. Chem. Int. Ed. 2016,
55, 11110-11114.
Keywords: asymmetric synthesis • Brønsted acid catalysis • or-
tho-quinone methide imines • nitrogen heterocycles • organoca-
talysis
[1]
Representative reviews: a) L. F. Tietze, G. Kettschau, Topics in Curr.
Chem. 1997, 189, 1-120; b) K. A. Jørgensen, Angew. Chem. 2000, 112,
3702-3733; Angew. Chem. Int. Ed. 2000, 39, 3558-3588; c) H. Pellissier,
Tetrahedron 2009, 65, 2839-2877; d) P. R. Girling, T. Kiyoi, A. Whiting,
Org. Biomol. Chem. 2011, 9, 3105-3121; e) X. Xiang, R. Wang, Chem.
Rev. 2013, 113, 5515-5546; f) G. Masson, C. Lalli, M. Benohoud, G. Da-
gousset, Chem. Soc. Rev. 2013, 3, 902-923;
[7]
Representative reviews: a) T. Akiyama, Chem. Rev. 2007, 107, 5744-
5758; b) M. Terada, Chem. Commun. 2008, 4097-4112; c) A. Zamfir, S.
Schenker, M. Freund, S. B. Tsogoeva, Org. Biomol. Chem. 2010, 8,
5262-5276; d) M. Terada, Synthesis 2010, 12, 1929-1982; e) D. Kampen,
C. M. Reisinger, B. List, Top. Curr. Chem. 2010, 291, 395-456. f) M. Ru-
eping, B. J. Nachtsheim, W. Ieawsuwan, I. Atodiresei, Angew. Chem.
2011, 123, 6838–6853; Angew. Chem. Int. Ed. 2011, 50, 6706–6720; g)
S. Schenker, A. Zamfir, M. Freund, S. B. Tsogoeva, Eur. J. Org. Chem.
2011, 2209-2222; h) F. E. Heldt, D. Grau, S. B. Tsogoeva, Molecules
2011, 20, 16103-16626; i) D. Parmar, E. Sugiono, S. Raja, M. Rueping,
Chem. Rev. 2014, 114, 9047-9153.
[2]
[3]
Representative reviews: a) K. Wojciechowski, Eur. J. Org. Chem. 2001,
3587–3605; b) d) W.-J. Bai, J. G. David, Z.-G. Feng, M. G. Weaver, K.-
L. Wu, T. R. R. Pettus, Acc. Chem. Res. 2014, 47, 3655-3664; c) L. Ca-
ruana, M. Fochi, L. Bernardi, Molecules 2015, 20, 11733-11763; d) Z.
Wang, J. Sun, Synthesis 2015, 47, 3629-3644; e) A. A. Jaworski, K. A.
Scheidt, J. Org. Chem. 2016, 81, 10145-10153.
From our group: a) O. El-Sepelgy, S. Haseloff, S. K. Alamsetti, C. Schnei-
der, Angew. Chem. 2014, 126, 8057–8061; Angew. Chem. Int. Ed. 2014,
53, 7923–7927; b) S. Saha, C. Schneider, Chem. Eur. J. 2015, 21, 2348–
2352; c) S. Saha, C. Schneider, Org. Lett. 2015, 17, 648–651; d) S. Saha,
S. K. Alamsetti, C. Schneider, Chem. Commun. 2015, 51, 1461–1464; e)
S. K. Alamsetti, M. Spanka, C. Schneider, Angew. Chem. 2016, 128,
2438–2442; Angew. Chem. Int. Ed. 2016, 55, 2392-2396; f) K. Gebauer,
F. Reuß, M. Spanka, C. Schneider, Org. Lett. 2017, 19, 4588-4591 Se-
lect examples from other groups: g) D. Wilcke, E. Herdtweck, T. Bach,
Synlett 2011, 1235-1238; h) C.-C. Hsiao, H.-H. Liao, M. Rueping, Angew.
Chem. 2014, 126, 13474-13479; Angew. Chem. Int. Ed. 2014, 53,
13258–13263; i) W. Zhao, Z. Wang, B. Chu, J. Sun, Angew. Chem. 2015,
127, 1930–1933; Angew. Chem. Int. Ed. 2015, 54, 1910-1913; j) J.-J.
Zhao, S.-B. Sun, S.-H. He, Q. Wu, F. Shi, Angew. Chem. 2015, 127,
5550–5554; Angew. Chem. Int. Ed. 2015, 54, 5460–5464; k) Z. Wang, F.
Ai, Z. Wang, W. Zhao, G. Zhu, Z. Lin, J. Sun, J. Am. Chem. Soc. 2015,
137, 383–389; l) C.-C. Hsiao, S. Raja, H.-H. Liao, I. Atodiresei, M.
Rueping, Angew. Chem. 2015, 127, 5854–5857; Angew. Chem. Int. Ed.
2015, 54, 5762–5765; m) Z. Lai, Z. Wang, J. Sun, Org. Lett. 2015, 17,
6058-6061, n) G. C. Tsui, L. Liu, B. List, Angew. Chem. 2015, 127, 7814-
7818; Angew. Chem. Int. Ed. 2015, 54, 7703-7706; o) Y. Xie, B. List,
Angew. Chem. 2017, 129, 5018-5022; Angew. Chem. Int. Ed. 2017, 56,
4936-4940.
[8]
[9]
H. Steinhagen, E. J. Corey, Angew. Chem. 1999, 111, 2054–2056; An-
gew. Chem. Int. Ed. 1999, 38, 1928–1931.
Further lowering the temperature slowed down the reaction completely.
[10] Review: H.-P. Husson, J. Royer, Chem. Soc. Rev. 1999, 28, 383–394.
[11] M. Rueping, T. Theissmann, M. Stoeckel, A. P. Antonchick, Org. Biomol.
Chem. 2011, 9, 6844.
[12] Reviews: a) A. R. Katritzky, S. Rachwal, B. Rachwal, Tetrahedron 1996,
52, 15031–15070; b) V. Sridharan, P. A. Suryavanshi, J. C. Menéndez,
Chem. Rev. 2011, 111, 7157–7259; Selected syntheses: c) T. Akiyama,
H. Morita, K. Fuchibe, J. Am. Chem. Soc. 2006, 128, 13070–13071; d)
H. Liu, G. Dagousset, G. Masson, P. Retailleau, J. Zhu, J. Am. Chem.
Soc. 2009, 131, 4598–4599; e) Z.-Y. Han, H. Xiao, X.-H. Chen, L.-Z.
Gong, J. Am. Chem. Soc. 2009, 131, 9182–9183; f) Y.-L. Du, Y. Hu, Y.-
F. Zhu, X.-F. Tu, Z.-Y. Han, L.-Z. Gong, J. Org. Chem. 2015, 80, 4754–
4759.
[4]
From our group: a) M. Kretzschmar, T. Hodik, C. Schneider, Angew.
Chem. 2016, 128, 9941-9946; Angew. Chem. Int. Ed. 2016, 55, 9788-
9792; b) T. Hodik, C. Schneider, Org. Biomol. Chem. 2017, 15, 3706-
3716; Select examples from other groups: c) H.-H. Liao, A. Cha-
tupheeraphat, C.-C. Hsiao, I. Atodiresei, M. Rueping, Angew. Chem.
2015, 127, 15760–15765; Angew. Chem. Int. Ed. 2015, 54, 15540–
15544; d) A. Chatupheeraphat, H.-H. Liao, S. Mader, M. Sako, H. Sasai,
I. Atodiresei, M. Rueping, Angew. Chem. 2016, 128, 4882-4887; Angew.
Chem. Int. Ed. 2016, 55, 4803–4807; e) L.-Z. Li, C.-S. Wang, W.-F. Guo,
G.-J. Mei, F. Shi, J. Org. Chem. 2018, 83, 614-623.
[5]
Select additional O-heterocycle syntheses via ortho-quinone methides:
a) E. Alden-Danforth, M. T. Scerba, T. Lectka, Org. Lett. 2008, 10, 4951–
This article is protected by copyright. All rights reserved.