The Journal of Organic Chemistry
Article
(125 MHz, CDCl3): δ 169, 161.2, 143.2, 136.7, 121.6, 119.3, 115.4,
55.4; HR EIMS: 223.0117 m/z (calcd for C10H9NOS2: 223.0120).
2-(4-Methoxyphenylthio)-4,5-dimethylthiazole (3r). Red
Enterprise (SPORE), the Science and Technology Plan of
Zhejiang Province (2011C24004), and the Singapore−MIT
alliance. X.L. is grateful to the National University of Singapore
for the Young Research Award (C-143-000-022). R.L., D.H.,
and K.-W.H. are grateful for funding from KAUST and
computing time from the NOOR computer cluster managed by
the KAUST supercomputing team.
1
liquid; H NMR (500 MHz, CDCl3): δ 7.57−7.54 (d, 2H), 6.93−
6.90 (d, 2H), 3.83 (s, 3H), 2.26 (s, 3H), 2.21 (s, 3H); 13C NMR (125
MHz, CDCl3): δ 162.6, 160.9, 148.8, 136.2, 127.4, 122.5, 115.1, 55.3,
14.6, 11.2; HR EIMS: 251.0433 m/z (calcd for C12H13ONS2:
251.0439).
2-(4-Methoxyphenylthio)-1-methyl-1H-benzo[d]imidazole
1
(3s). Brown solid; H NMR (500 MHz, CDCl3): δ 7.71−7.69 (d,
REFERENCES
■
1H), 7.44−7.41 (d, 2H), 7.25−7.19 (m, 3H), 6.87−6.84 (d, 2H), 3.76
(s, 3H), 3.71 (s, 3H); 13C NMR (125 MHz, CDCl3): δ 159.9, 149.6,
143, 136.5, 133.9, 122.7, 122.1, 121.1, 119.5, 115.1, 109, 55.3, 30.6;
HR EIMS: 270.0817 m/z (calcd for C15H14N2OS: 270.0827).
3-(Phenylthio)-1H-indole (3t). White solid; 1H NMR (300
MHz, CDCl3): δ 8.41 (br s, 1H), 7.64−7.61 (d, 1H), 7.49−7.43
(m, 2H), 7.3−7.03 (m, 7H); 13C NMR (125 MHz, CDCl3): δ 139.2,
136.5, 130.6, 129.1, 128.7, 126, 125.9, 124.8, 123, 120.9, 119.7, 111.5;
HR EIMS: 225.0607 m/z (calcd for C14H11NS: 225.0612).
5-Methyl-3-(phenylthio)-1H-indole (3u). White solid; 1H
NMR (300 MHz, CDCl3): δ 8.31 (br s, 1H), 7.44−7.43 (m, 2H),
7.34−7.31 (d, 1H), 7.26−7.04 (m, 6H), 2.43 (s, 3H); 13C NMR (125
MHz, CDCl3): δ 139.5, 134.8, 130.8, 130.4, 129.4, 128.7, 125.7, 124.7,
124.6, 119.2, 111.2, 102.1, 21.4; HR EIMS: 239.0767 m/z (calcd for
C15H13NS: 239.0769).
(1) (a) Koci, J.; Klimesova, V.; Waisser, K.; Kaustova, J.; Dahse, H.-
M.; Moellmann, U. Bioorg. Med. Chem. Lett. 2002, 12, 3275.
(b) Zhang, L.; Fan, J.; Vu, K.; Hong, K.; Le Brazidec, J.-Y.; Shi, J.;
Biamonte, M.; Busch, D. J.; Lough, R. E.; Grecko, R.; Ran, Y.;
Sensintaffar, J. L.; Kamal, A.; Lundgren, K.; Burrows, F. J.; Mansfield,
R.; Timony, G. A.; Ulm, E. H.; Kasibhatla, S. R.; Boehm, M. F. J. Med.
Chem. 2006, 49, 5352. (c) Dumas, J.; Brittelli, D.; Chen, J.; Dixon, B.;
Hatoum-Mokdad, H.; Konig, G.; Sibley, R.; Witowsky, J.; Wong, S.
Bioorg. Med. Chem. Lett. 1999, 9, 2531. (d) Paramashivappa, R.;
Kumar, P. P.; Rao, S. P. V.; Rao, A. S. Bioorg. Med. Chem. Lett. 2003,
13, 657. (e) Naya, A.; Kobayashi, K.; Ishikawa, M.; Ohwaki, K.; Saeki,
T.; Noguchi, K.; Ohtake, N. Chem. Pharm. Bull. 2003, 51, 697.
(f) Pejin, B.; Iodice, C.; Tommonaro, G.; Rosa, S. D. J. Nat. Prod.
2008, 71, 1850. (g) Wei, H.; Yang, G.-F. Bioorg. Med. Chem. 2006, 14,
8280.
7-Methyl-3-(phenylthio)-1H-indole (3v). Brown-colored gel;
1H NMR (300 MHz, CDCl3): δ 8.35 (br s, 1H), 7.50−7.46 (m,
2H), 7.20−7.03 (m, 7H), 2.53 (s, 3H); 13C NMR (125 MHz, CDCl3):
δ 139.3, 136.1, 130.3, 128.8, 128.7, 125.9, 124.8, 123.6, 121.1, 120.7,
117.4, 103.4, 16.4; HR EIMS: 239.0769 m/z (calcd for C15H13NS:
239.0766).
(2) (a) Sorg, A.; Bruckner, R. Synlett 2005, 289. (b) Vaz, B.; Alvarez,
̈
R.; Souto, J. A.; de Lera, A. R. Synlett 2005, 294. (c) Liebeskind, L. S.
Org. Lett. 2002, 4, 979. (d) Grice, C. A.; Tays, K. L.; Savall, B. M.; Wei,
J.; Butler, C. R.; Axe, F. U.; Bembenek, S. D.; Fourie, A. M.; Dunford,
P. J.; Lundeen, K.; Coles, F.; Xue, X.; Riley, J. P.; Williams, K. N.;
Karlsson, L.; Edwards, J. P. J. Med. Chem. 2008, 51, 4150. (e) Musser,
J. H.; Kubrak, D. M.; Chang, J.; DiZio, S. M.; Hite, M.; Hand, J. M.;
Lewis, A. J. J. Med. Chem. 1987, 30, 400. (f) Hall, W. K. J. Am. Chem.
Soc. 1952, 74, 1081. (g) Fernndez-Rodriguez, M. A.; Shen, Q.;
Hartwig, J. F. Chem.Eur. J. 2006, 12, 7782.
Computational Details. All DFT gas-phase calculations were
performed with the Gaussian 09 computational suite.21 Becke’s three-
parameter hybrid exchange functional and the nonlocal correlation
functional of Lee, Yang, and Parr (B3LYP) was applied for
optimizations of all compounds, and frequency analyses were done
to verify minimum structures showing positive eigenvalues of the
Hessian matrix or transition-state structures exhibiting only a single
negative eigenvalue.22 The LANL2DZ effective core potential of Hay
and Wadt was applied for I and Cu atoms,23 and the all-electron split-
valence Pople basis set 6-31+G(d,p) containing polarization functions
on both heavy atoms and hydrogens and diffuse functions on heavy
atoms was used.24 Single-point energies in DMF were computed at the
B3LYP/6-311+G(d,p) level of theory on the gas-phase optimized
structures with the default integral equation formalism variant
IEFPCM implemented in Gaussian 09.25,26 MECP was determined
and optimized with the code designed by Harvey and co-workers at
the same level of theory.18 This Fortan-based code together with shell
scripts extracts calculated Gaussian output energies and gradients of
two input structures with different spin states to generate an effective
gradient toward the MECP. All energies reported are a sum of
electronic energy with ZPE corrections except for the estimation of the
MECP energy.
(3) (a) Katritzky, A. R.; Aurrecoechea, J. M.; de Vazquez, M.; Luis,
M. Heterocycles 1987, 26, 427. (b) Buchwald, S. L.; Bolm, C. Angew.
Chem., Int. Ed. 2009, 48, 5586. (c) Alvaro, E.; Hartwig, J. F. J. Am.
Chem. Soc. 2009, 131, 7858. (d) Barbieri, R. S.; Bellato, C. R.; Dias, A.
K. C.; Massabni, A. C. Catal. Lett. 2006, 109, 171. (e) Savarin, C.;
Srogl, J.; Liebeskind, L. S. Org. Lett. 2002, 4, 4309. (f) Egi, M.;
Liebeskind, L. S. Org. Lett. 2003, 5, 801. (g) Ding, Q.; He, X.; Wu, J. J.
Comb. Chem. 2009, 11, 587. (h) Ding, Q.; Wu, J. J. Comb. Chem. 2008,
10, 541.
(4) (a) Murru, S.; Mondal, P.; Yella, R.; Patel., K. B. Eur. J. Org.
Chem. 2009, 5406 and references therein.. (b) Murru, S.; Ghosh, H.;
Sahoo, K. S.; Patel, K. B. Org. Lett. 2009, 11, 4254. (c) Shi, L.; Liu, X.;
Zhang, H.; Jiang, Y.; Ma, D. J. Org. Chem. 2011, 76, 4200. (d) Katritzky,
A. R.; Aurrecoechea, J. M.; Vazquez de Miguel, L. M. V. J. Chem. Soc.
Perkin Trans. I 1987, 769. (e) Ajiki, K.; Hirano, M.; Tanaka, K. Org.
Lett. 2005, 7, 4193.
(5) (a) Fukuzawa, S.; Shimizu, E.; Atsuumi, Y.; Haga, M.; Ogata, K.
Tetrahedron Lett. 2009, 50, 2374. (b) Popov, I.; Do, H.-Q.; Daugulis,
O. J. Org. Chem. 2009, 74, 8309.
(6) (a) Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172.
(b) Ackermann, L.; Vicente, R.; Kapdi, A. Angew. Chem., Int. Ed.
2009, 48, 9792. (c) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110,
1147. (d) Ackermann, L.; Althammer, A.; Fenner, S. Angew. Chem., Int.
Ed. 2009, 48, 201. (e) Lane, B. S.; Brown, M. A.; Sames, D. J. Am.
Chem. Soc. 2005, 127, 8050. (f) Yang, S.-D.; Sun, C.-L.; Fang, Z.; Li,
B.-J.; Li, Y.-Z.; Shi, Z.-J. Angew. Chem., Int. Ed. 2008, 47, 1473.
(g) Monguchi, D.; Fujiwara, T.; Furukawa, H.; Mori, A. Org. Lett.
2009, 11, 1607. (h) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J.
Am. Chem. Soc. 2006, 128, 6790. (i) Li, Z.; Li, C.-J. J. Am. Chem. Soc.
2005, 127, 6968. (j) Do, H.-Q.; Daugulis, O. J. Am. Chem. Soc. 2007,
129, 12404. (k) Ackermann, L.; Potukuchi, H. K.; Landsberg, D.;
Vicente, R. Org. Lett. 2008, 10, 3081. (l) Shirakawa, E.; Itoh, K.;
Higashino, T.; Hayashi, T. J. Am. Chem. Soc. 2010, 132, 15537.
(m) Shirakawa, E.; Zhang, X.; Hayashi, T. Angew. Chem., Int. Ed. 2011,
ASSOCIATED CONTENT
■
S
* Supporting Information
1
Mechanistic studies and H NMR and 13C NMR spectra of all
compounds and details of DFT calculations. This material is
AUTHOR INFORMATION
Corresponding Author
W.H.)
■
ACKNOWLEDGMENTS
This study was supported in part by the Ministry of Education
(MOE2010-T2-083), the Singapore−Peking−Oxford Research
■
9006
dx.doi.org/10.1021/jo2017444|J. Org. Chem. 2011, 76, 8999−9007